
Neapolis University

HEPHAESTUS Repository http://hephaestus.nup.ac.cy

School of Information Sciences Articles

2014

Real-time indexing for large image

databases: color and edge directivity

descriptor on GPU

Bampis, Loukas

Springer

http://hdl.handle.net/11728/10144

Downloaded from HEPHAESTUS Repository, Neapolis University institutional repository



J Supercomput (2015) 71:909–937
DOI 10.1007/s11227-014-1343-2

Real-time indexing for large image databases: color
and edge directivity descriptor on GPU

L. Bampis · C. Iakovidou · S. A. Chatzichristofis ·
Y. S. Boutalis · A. Amanatiadis

Published online: 2 December 2014
© Springer Science+Business Media New York 2014

Abstract In this paper, we focus on implementing the extraction of a well-known low-
level image descriptor using the multicore power provided by general-purpose graphic
processing units (GPGPUs). The color and edge directivity descriptor, which incor-
porates both color and texture information achieving a successful trade-off between
effectiveness and efficiency, is employed and reassessed for parallel execution. We
are motivated by the fact that image/frame indexing should be achieved real time,
which in our case means that a system should be capable of indexing a frame or
an image as it becomes part of a database (ideally, calculating the descriptor as the
images are captured). Two strategies are explored to accelerate the method and bypass
resource limitations and architectural constrains. An approach that exclusively uses
the GPU together with a hybrid implementation that distributes the computations to
both available GPU and CPU resources are proposed. The first approach is strongly
based on the compute unified device architecture and excels compared to all other
solutions when the GPU resources are abundant. The second implementation suggests
a hybrid scheme where the extraction process is split in two sequential stages, allow-
ing the input data (images or video frames) to be pipelined through the central and
the graphic processing units. Experimental results were conducted on four different
combinations of GPU–CPU technologies in order to highlight the strengths and the
weaknesses of all implementations. Real-time indexing is obtained over all compu-
tational setups for both GPU-only and Hybrid techniques. An impressive 22 times
acceleration is recorded for the GPU-only method. The proposed Hybrid implemen-
tation outperforms the GPU-only implementation and becomes the preferred solution
when a low-cost setup (i.e., more advanced CPU combined with a relatively weak
GPU) is employed.

L. Bampis · C. Iakovidou · S. A. Chatzichristofis · Y. S. Boutalis · A. Amanatiadis (B)
Department of Electrical and Computer Engineering, Democritus University of Thrace,
12 Vas. Sofias Str, Xanthi 67100, Greece
e-mail: aamanat@ee.duth.gr

123



910 L. Bampis et al.

Keywords GPU · Hybrid implementation · Image retrieval · Feature extraction ·
Database indexing

1 Introduction

An impressive number of content-based image retrieval (CBIR) methods have been
lately presented in the literature [1]. CBIR emerged due to the rich information that
images hold in a polysemy way, making it hard to be justified through words. The
problem addressed by the proposed methods is to develop a system that is capable
of describing an image with a descriptor sufficiently distinctive to identify the par-
ticular characteristics but also capable to associate the similar ones from a collection
of images. CBIR consists of two stages; the indexing of the images in a database
(descriptor extraction) and the searching phase.

There are mainly, two basic approaches to the CBIR problem arising according to
the type of visual features that they employ. The features are either global features (GF),
like color features, texture features, and shape features being computed on the entire
image, or local features (LF) which have a spatial extent (local neighborhood) and
are typically salient patches of the image, rich in visual information. Local-feature
approaches provide a slightly better retrieval effectiveness than global features [2].
They represent images with multiple points of interest in a multi-dimensional feature
space in contrast to single-point global feature representations. This high dimensional-
ity of the LFs adds to the robustness, but makes the methods computationally expensive
leading to a dramatic increase in terms of execution time as the databases grow.

CBIR methods based on LFs aim to describe the visual content of the images in
a more semantic way, retrieving images with similar content apart from the visual
likeness. Current research in the CBIR field has been strongly focused on the bag
of visual words (BOVW) framework, which is directly inspired by the bag of words
method first introduced in the text retrieval field. This approach manages to increase the
effectiveness over near duplicate images compared to GF and also improves the effi-
ciency compared to LF methods. The BOVW framework is considered as a promising
framework for content-based image retrieval [3].

Methods that make use of local features and visual words are, to some extent,
rotation, scale and viewpoint invariant. Unfortunately, they require computationally
challenging operations like multiple scans per image, extensive training and time-
consuming visual codebook generation. Their efficiency remains unfit for large data-
bases, especially to those that are vigorously enriched with new images, like on-line
databases, and whose codebook (and by extension the whole descriptor) must be
reassessed when their size changes significantly.

On the other hand, in applied research CBIR often relies on global features, at least
as a foundation for further research [4]. Methods that use global descriptors are lighter,
database-size invariant and perform better than local features when the objective is to
retrieve images with similar visual properties to the query image [5]. An advantage
of the GF over the BOVW model is associated with the fact that BOVW methods,
disregard the information about the spatial layout of the visual content, and they
present limited descriptive ability on whole-image categorization tasks [6]. Moreover,

123



Real-time indexing for large image databases 911

in two-stage multimodal retrieval systems, where both visual and textual information
are available and deployed, authors in [7] found that global features perform better
than the BOVW paradigm. Furthermore, the quantitative characteristics of the global
features, make them widely usable and effective [8].

As image databases are growing, it becomes apparent that the efficiency, apart from
the effectiveness of a method, is a matter of great importance. Flickr has an image
upload rate of about 4.5 million/day, when Facebook has already an impressive 300
million image uploads by its users, and according to 2011 YouTube statistics over 4
billion hours of video is watched each month. Accelerating the descriptor extraction
procedure will allow immediate indexing of the visual content of the image. In such
a case, low-level features can be incorporated in the header of the captured file for
future use. Additionally, speeding up the image’s descriptor extraction would allow
large image repositories, such as Flickr, iCloud and Dropbox, to index the uploaded
images as they become part of their databases. It is worth noting, that in case of videos,
real-time feature extraction would allow the real-time generation of essential low-level
information that can be used for video summarization and automatic annotation.

In the meanwhile, graphics processing units (GPUs), which are powerful parallel
computing devices used in embedded systems, personal computers, game consoles and
mobile devices, have become attractive to general-purpose system development with
the introduction of the compute unified device architecture (CUDA) by Nvidia. As far
as image processing is concerned, general-purpose computing on graphics processing
units (GP-GPU), which essentially means using a GPU to perform computations which
are traditionally handled by the CPU, flourished as recording, enhancing and shar-
ing multimedia data, became an everyday activity for computer and portable/mobile
device users. Thus, multiple general-purpose GPUs implementations of existing image
processing, recognition, indexing, and categorization algorithms or parts of those algo-
rithms have been introduced both for computers [9–15] and mobile devices [16–18].
All methods take advantage of the available highly parallel computing architecture to
perform the heavy computational tasks and the manipulation of the massive amount
of data usually employed in image processing.

In this paper, we focus on real-time image indexing for retrieval tasks. Apart from
the ongoing growth of on-line multimedia files, executing computer vision algorithms
on devices with limited memory [19] and computation complexity capabilities has
revealed the need to make descriptors faster to compute. We define as real-time index-
ing the ability of a system to index (i.e., to extract a descriptor vector) during capturing
a VGA frame stream of 25 fps. We employ the color and edge directivity descriptor
(CEDD) [20] which incorporates both color and texture information. CEDD is a com-
pact descriptor and as recently the authors in [21] and [22] point out, widely accepted
due to its successful trade-off between effectiveness and efficiency.

The CEDD descriptor has been widely used in recent literature. Some illustrative
examples are the following: Leuken et al. [23] used CEDD to extract features as part of
a technique that visually diversifies image search results. In [24], the authors propose
the use of the CEDD descriptor for image visual similarity estimation while in [25],
CEDD is employed as image feature for integrating content-based similarity search
in content centric networks. Recently, authors in [26] employ the SURF detector to
define salient image patches of blob-like textures and use the CEDD, to produce

123



912 L. Bampis et al.

local-feature vectors. Its lightweight nature and effective performance, is key for the
inclusion of the method in a tool for summarization of arthroscopic videos presented
in [27]. CEDD consist of 144 coefficients requiring <54 bytes. Moreover, CEDD
is computationally lightweight relative to other feature extraction mechanisms, but
has comparable accuracy. Thus, apart from being used as a stand-alone indexing and
retrieval solution it is also integrated in a great variety of other methods [28–32] that
in some stages require a low-level feature representation of the visual content.

We propose the implementation of CEDD with two different strategies. In both cases
the approaches follow the parallel nature of the CEDD method. Initially, taking into
account the principles, the guidelines and the constrains of the CUDA architecture, we
reassess the model and design a parallel equivalent which is tested on four different
computational setups with varying CPU and GPU technologies. In the sequel, by
measuring the execution time of the different parts of the algorithm, the overhead
introduced by multiple memory accesses and by estimating the necessary available
GPU resources, we calculate the most computationally demanding stage. The detected
bottleneck of the process, which is more evident when the GPU resources are limited,
is addressed by an alternative proposed hybrid implementation employed to distribute
the computations on both CPU and GPU in a pipelined scheme as to exploit all the
available computational power of a system.

The rest of the paper is organized as follows: Sect. 2 provides a short overview of
the CEDD descriptor and Sect. 3 briefly outlines the CUDA architecture principles
and constrains in order for the paper to be self-contained. Section 4 presents the
design strategies followed for both proposed implementations. Additionally, Sect. 4
proposes a new Parallel version of the Participation Identifier for the implementation
of TSK Fuzzy systems. The experimental results are given and commented in Sect. 5.
Conclusions are drawn in Sect. 6 where open issues for future work are stated as well.

2 CEDD: color and edge directivity descriptor

The CEDD is a global descriptor first introduced in [33] for the indexing of large image
collections and the execution of retrieval tasks. As its name implies, CEDD consists
of a color extraction component and a texture extraction unit. CEDD was designed
with particular attention to size and storage requirements without compromising its
discrimination ability. In order to highlight the effectiveness of CEDD over several
other descriptors from the literature, experiments on WANG[34] and UCID[35] data-
bases are illustrated in Table 1. To measure the performance of the descriptor, we used
the mean average precision (MAP) method.

The remainder of this section briefly presents the CEDD descriptor and its structural
elements. For a more detailed description, kindly refer to [20,33]. CEDD begins by
dividing images of any size into 1,600 rectangular image areas, referred to as Image-
Blocks. The algorithm’s objective is to categorize the Image-Blocks according to their
combined color and texture information and compactly represent them with a single
Image-Block vector. When all vectors of the 1,600 Image-Blocks are produced they
are further combined to form a single vector that serves as the descriptor of the image
for indexing and retrieval tasks. As depicted in Fig. 1, the Texture and the Color Units

123



Real-time indexing for large image databases 913

Table 1 MAP values on
WANG and UCID databases

Descriptor WANG UCID

CEDD 0.5891 0.6748

FCTH [20] 0.5736 0.6723

BTDH [36] 0.3503 0.5353

C.CEDD [20] 0.5296 0.6584

C.FCTH [20] 0.5222 0.6487

JCD [37] 0.5880 0.6876

SpCD [38] 0.4578 0.5840

MPEG-7 EHD [39] 0.3097 0.5326

MPEG-7 SCD [39] 0.2557 0.4998

MPEG-7 CLD [39] 0.4626 0.5361

Color histograms 0.3018 0.4443

Tamura directionality 0.2586 0.4411

Auto-correlograms [40] 0.3634 0.5507

Top-surf (10,000 visual words) [41] 0.2526 0.4248

Top-surf (200,000 visual words) [41] 0.1612 0.3952

Fig. 1 CEDD parallel color and texture extraction units

are computed in parallel and their outputs are combined and quantized to produce the
final descriptor.

A commonly used way to describe the color information of an image is by linking
the color space channels. Linking is defined as the combination of more than one
histograms to a single one [20]. In our case, after the division of the image into 1,600
Image-Blocks, the average color of each block is converted from the RGB to the HSV
color space. Then, a two-staged fuzzy system is employed to produce a fuzzy linking
histogram. The first stage of the fuzzy system has the three mean HSV channels of an
Image-Block as inputs, and forms a 10-bin histogram as an output. Each one of the
10-bins represents a preset color. The three inputs of the fuzzy system are described
as follows: Hue (H) is divided into eight fuzzy areas, Saturation (S) is divided into
two fuzzy regions while the channel Value (V) is divided into three areas. The output

123



914 L. Bampis et al.

Fig. 2 a Filter coefficients for edge detection, b Edge type diagram (heuristic pentagon diagram) [20]

of the fuzzy system is enabled by a set of 20 rules and returns a crisp value ranging
from 0 to 1 (TSK type fuzzy system).

Depending on the actual mean value of H, S and V values, the fuzzy rules pro-
duce a 10-bin histogram output (Image-Block Stage 1 Vector). After the first stage
is completed 1,600 10-bin histograms have been produced, for every Image-Block
accordingly.

The next stage consists of a second fuzzy linking system (TSK) which is responsible
for adding the brightness value of a hue. Again the S and V mean values of an Image-
Block, previously calculated, become fuzzy inputs.

The output is a 3-bin histogram of crisp values indicating if the color will be
characterized as light, normal or dark hued. These two outputs (Stage 1 vector and
Stage 2 vector) are combined so that each Image-Block is characterized by the color
extraction procedure. On the completion of the process, a 24-bin color histogram is
produced. Each bin represents a preset color as follows: (0) Black, (1) Grey, (2) White,
(3) Dark Red, (4) Red, (5) Light Red, (6) Dark Orange, (7) Orange, (8) Light Orange,
(9) Dark Yellow, (10) Yellow, (11) Light Yellow, (12) Dark Green, (13) Green, (14)
Light Green, (15) Dark Cyan, (16) Cyan, (17) Light Cyan, (18) Dark Blue, (19) Blue,
(20) Light Blue, (21) Dark Magenta, (22) Magenta, (23) Light Magenta.

The Texture information extraction unit employs the five digital filters proposed by
the MPEG-7 Edge Histogram Descriptor-EHD [39]. These filters are illustrated in Fig.
2a. In this case, each Image-Block is converted to the YIQ color space and separated
into four Image Sub-Blocks. The value of each Image Sub-Block is the mean value
of the luminosity (Y) of the pixels that participate in it. The result obtained from the
application of the digital filters to the Image Sub-blocks for each Image Block, serves
as input to a fuzzy mapping scheme, illustrated in Fig. 2b. In its essence this mapping
system is responsible for indicating which kind of texture (from five available plus
one “Non-Texture”) is present for every Image-Block. More than one textures can
simultaneously be present. The normalized maximum responses (edge magnitudes)
from the applied filters per Image Block are placed in the heuristic pentagon diagram,
as shown in Fig. 2b. Each value is placed along the line that pertains to the filter it

123



Real-time indexing for large image databases 915

emerged from. If that value is greater than the threshold associated with the line it
belongs to, the Image-Block is classified in the respective type of texture. This means
that every Image Block can participate in more than one type of textures, as long
as the corresponding edge magnitude scores higher than the threshold. Overall, the
output of the texture unit is a 6-bin vector for each Image Block. The texture regions
are described as follows: Non Edge, Non Directional Edge, Horizontal Edge, Vertical
Edge, 45-Degree Diagonal and 135-Degree Diagonal.

Finally 1,600 6-bin texture vectors, one for every Image-Block, are produced. Every
bin represents one of the five available textures while the first bin represents the
non-textured case. When a texture was found to be present in that Image-Block, the
corresponding bin is marked with 1. Otherwise it is marked as 0, producing the binary
Image-block texture vector.

When the color vectors and the texture vectors have been calculated for every Image-
Block, the final Texture-Color vector for every Image-Block is produced by combining
the 1 × 6 texture vector and 1 × 24 color vector. Then all Image-Block descriptors
are added to form the image descriptor. This vector is normalized and quantized into
8 predefined levels. On completion the CEDD descriptor has been formed and will
represent the visual content of the image for indexing and retrieval tasks.

3 CUDA architecture

Compute unified device architecture (CUDA) is a general-purpose parallel comput-
ing architecture introduced by Nvidia. This section provides a quick overview of
the CUDA architecture and its optimization issues in order for the paper to be self-
contained.

Generally in CUDA terms, the GPU is called device and the CPU that calls the
CUDA functions is the host. The GPU is divided in a number of multicore processors
named multiprocessors (MPs), as shown in Fig. 3. Each multiprocessor is a set of
processors with a single instruction multiple data (SIMD) architecture, meaning that
at each clock cycle, a multiprocessor executes the same instruction on a group of
threads, called a warp. The maximum size of a warp that can be handled is 32. Due to
the SIMD nature of CUDA, at one time the threads must perform identical operations
[10]. By ignoring this constraint and by enabling control or memory divergence [42]
the application is partially serialized because different instructions will be executed in
different clock cycles and groups of threads will unnecessarily stay idle [43].

CUDA-enabled GPUs have a number of cores that can collectively run computing
threads. In every CUDA application there are two types of threads, the host thread of
the CPU (host) and the threads of the device. The host is responsible for copying data
between the CPU and the GPU and initiates the parallel functions called kernels. The
number of device threads that can be executed in parallel on such devices is currently
in the order of hundreds but still provides many applications with the opportunity to
excel, benefiting from the parallelism that the GPUs introduce, compared to the CPUs.

CUDA kernel function is a set of instructions that the device’s threads will execute.
When launching a CUDA kernel function, a developer specifies how many copies
(tasks) of it to run, or in other words, how many threads will be activated and execute

123



916 L. Bampis et al.

Fig. 3 Nvidia’s device architecture. The device consists of multiprocessors (MPs), and each of them
encloses a number of processors (Cores). Each core has its own registers and can access both global and
shared memory

the kernel. The threads executing a kernel are organized in a two-level hierarchy,
Thread Block and Grid as depicted in Fig. 4. Every Grid is a set of Thread Blocks and
every Thread Block is a set of threads. Based on this hierarchy every thread and Thread
Block has its own id that can be of one, two or three dimensions (threadIdx.x
,threadIdx.y andthreadIdx.z for threads andblockIdx.x ,blockIdx.y
and blockIdx.z for Thread Blocks) depending on the applied GPU technology.
The maximum number of Thread Blocks that can be executed in parallel varies and is
defined by the GPU model. In order to assure high device occupancy (i.e., engaging
as many resources as possible), a robust and therefore preferable approach is to use
less Thread Blocks of more threads wherever possible.

123



Real-time indexing for large image databases 917

Fig. 4 Structure of thread block and threads per kernel

The device memory space consists of various types of memories, as shown in Fig.
3. Registers are local memory spaces assigned per processor. The threads belonging
to the same Thread Block can share data through the Shared Memory without sending
it over the system memory bus. Threads from different Thread Blocks coordinate
only through Global Memory, a large and long-latency memory which has read/write
operations. Besides this, the Constant Memory and the Texture Memory allocated for
a grid are read-only and basically cached global memories. The Texture Memories are
preferred for handling 2D/3D arrays [44].

It is important to highlight that Constant Memories and Texture Memories are as fast
to access as Registers on cache. The Shared Memory is as fast as accessing Registers
too, as long as there is no bank conflict. It is divided into equal-sized memory modules
called banks in order to succeed bandwidth-wise. However, if two memory requests
fall in the same bank, then the access is serialized, reducing the bandwidth. Accessing
the Global Memory space is much slower, typically two orders of magnitude slower
than floating point multiplication and addition [45]. Global Memory read operations
from threads whose id follows the memory alignment guidelines can be coalesced
leading to faster execution.

In conclusion, concerning memory manipulation, if it is necessary to use multiple
times the same data from the Global Memory, the Texture Memory, the Constant
Memory or the Shared Memory, the efficient strategy is to copy the data to Registers
and access it from there, as long as this can be achieved. As a final note, two different
threads, in the same warp, can write simultaneously to the same address in the Global
Memory. This introduces a parallelization limitation since the writing order can not
be specified which can lead to unexpected results.

4 CUDA implementation

CEDD, as thoroughly explained previously, is a perfect candidate for parallel process-
ing because it divides the problem into many identical and independent sub-problems.

123



918 L. Bampis et al.

Fig. 5 GPU-only implementation flowchart

Moreover, employing the GPU to handle calculations allows us to take advantage of
its powerful computational resources for our application, which otherwise remains
unused. GPUs are available on every personal computer, their architecture is utilized
for image processing (since their main objective is to handle graphics) and thus, com-
prise a low cost and widely applicable solution for image processing applications.
When employed to accelerate algorithms that have a parallel structure by design, such
as CEDD, successful outcome is guaranteed.

The image indexing problem has yet another important aspect to take under con-
sideration; the massive input data and the needed iterations as to successfully index
large image or video collections. This parameter prompted us to face the challenge
with two different approaches. The first one is a GPU-only implementation oriented
towards the optimal manipulation of CUDA’s features. The second one is a hybrid
implementation committed to deploying every available resource (CPU–GPU) in a
pipelined-based scheme. Both CUDA implementations together with the original c#
source codes are available on-line at http://www.tinyurl.com/CEDD-CUDA.

This section describes the first adopted approach where the whole descriptor is gen-
erated by using exclusively GPU resources. The implementation, which is depicted
in Fig. 5, consists of three successive stages: the Average RGB values calculation
of every Image Sub-Block, the main Extraction Unit with color and texture extrac-
tion components for every Image Block and the third stage which forms the CEDD
descriptor of the image.

4.1 Reading the image/frame to be indexed

Before the GPU can begin to process the images/frames, the CPU starts by reading
the image from the hard drive. This step is handled by the CPU due to the absence of a
direct communication channel between the GPU and the storage device. At this point

123

http://www.tinyurl.com/CEDD-CUDA


Real-time indexing for large image databases 919

a critical decision must be made; we must decide whether we will ask the CPU to
simply read the image in the current saved format or burden the CPU with the task of
storing values belonging to an Image Sub-Block in neighboring memory slots per RGB
channel. Ideally, the accesses to the Global Memory that the threads perform should
be coalesced. This essentially means that the stored data accessed by the same Thread
Block should be sequential. For the first attempted implementation, we performed
no such data manipulation. As shown in the “Appendix”, the reading of the images
takes up on average 62 % of the total execution time. When further engaging the
CPU to rearrange the data in a suitable format, the GPU part of the implementation
achieved almost a 10 % speed-up, but the new CPU execution time (reading the image
and rearranging the data) significantly slowed down the overall implementation and
therefore data rearrangement was abandoned. Figure 6 illustrates the bmp storage
format as it was copied into the Global Memory of the GPU, as well as the thread
accessing pattern that occur during the first GPU kernel, i.e., the calculation of the
average RGB values explained right after.

4.2 Calculating the average RGB values of image sub-blocks

As mentioned earlier in Sect. 2, the method requires the image to be divided in 1,600
Image-Blocks in order to extract their color information and further divides each block
into four equal Image Sub-Blocks in order to extract the texture information. In total,
6,400 average color values need to be calculated for each of the three channels of the
RGB color space and become inputs both in the texture and the color units. For this
to be done 6,400*3 Thread Blocks are activated.

Each Thread Block contains as many threads as needed for the pixels to be summed
based on the original image size. As described before, the number of threads in each
block is limited. For instance in the weakest GPU that we tested, this limit is 512
threads per block. In this case, if an Image Sub-Block is formed by more than 512
pixels, their processing becomes partly serialized, delaying the total execution time.

The calculation of the average RGB values of an Image Sub-Block is essentially a
summation problem. Summation is by default a not fully parallelizable procedure. The
efficiency of the summation procedure depends mainly on the employed technique,
but can benefit from input data organized in a suitable manner, a scenario that we
explored but in our case was found unfit.

The widely employed technique that manages to semi-parallelize the summation
problem follows the Reduction process [46] architecture. This method is a tree-based
approach where every involved thread sums two values of the input data. The outcome
becomes the input data of the next step and the process continues until only two values
are left for one thread to finally sum.

In our implementation, for every RGB channel of an Image Sub-Block, a device
Thread Block is assigned. This one-to-one assignment that we adopt leads to a maxi-
mum image size of about 6.5 Mega-Pixels defined by the weakest GPU of 512 threads
per block. Since the Reduction process assigns one thread for the summation of two
values, the maximum Image Sub-Block size can be up to 1,024 pixels for each one of
the 6,400 Image Sub-Blocks that the image consists of. The maximum image size can

123



920 L. Bampis et al.

Fig. 6 The BMP image is copied to the GPU with its standard storage format

be further increased if more than one Thread Blocks are assigned per Image Sub-Block.
If that is the case, the output of every Thread Block responsible for the same Image
Sub-Block must be added. The optimum exploitation of the resources in a summation
process is achieved when all the available parallel threads per clock cycle are engaged
in the process. This can be ensured when all provided Thread Blocks are employed
and utilized to their maximum threading capacity, defined by the GPU model.

In our method, the values to be summed depend on the size of the Image Sub-Block.
Thus, when the size of the input image is small the utilization is not optimum and that
is also evident in our experimental results provided in the next section. By the end of
the summation process, the method can be divided into 1,600 independent problems.

123



Real-time indexing for large image databases 921

We will continue describing the implemented architecture for one of them, since they
all share the same instructions applied on different input data (Image Blocks).

4.3 Color information extraction unit: TSK fuzzy system implementation using a
parallel participation identifier

Every Image Block (four Image Sub-Blocks) enters simultaneously the Texture and
the Color Units. We will begin by describing the Color Extraction Unit (Fig. 1).
The average pixel values of the four Image Sub-Blocks are used to find the average
red, green and blue value of the entire Image Block they belong to. These RGB
values are converted into the HSV (Hue, Saturation, Value) color space. The S and
V components become inputs to the Fuzzy Brightness Indicator while in parallel all
three components (HSV) enter the 10-bin Fuzzy Histogram. Both fuzzy systems share
the same architectural principles in the GPU implementation using a proposed parallel
version of a participation identifier (PPI).

The PPI technique is employed to indicate whether or not a value belongs to a
specific sub-region of a range of values. PPI ensures that the requested output will
be produced in one time-step since it evaluates the participation of the input on all
sub-regions in parallel. We assume that a set Sk, k ∈ [0, n] may be classified into
Vi , i ∈ [0, l], l, n ∈ N regions. We also assume that each Sk belongs to Vi . Using the
straightforward approach, for each Sk , one up to l number of participation checks are
required so as to form the outcome. In case of PPI, each Sk is compared in parallel with
all Vi so as to determine the participation of Sk in one or more of them. Even though,
following the straightforward approach could allow for the output to be produced in
one single time-step (if the participation was located in the first tested sub-region)
using the minimum amount of resources, PPI ensures that regardless of the sub-region
that Sk will be found to participate, always one time step will be needed. For this
to be achieved we engage the maximum needed resources, i.e., number_of_thread =
number_of_sub-regions.

This approach can be adopted by a variety of clustering applications, especially
when many sub-regions/clusters are employed. As mentioned earlier, due to the SIMD
CUDA architecture, at one time, threads must perform identical operations. Thus, PPI
adapts to this principle providing the outcome at once, allowing in the next time-step
the procedure to be continued with a new set of identical operations. The PPI method
described above applies to the TSK-Fuzzy systems implementation. One thread per
membership function region is activated. Given the fact that the 10-bin Fuzzy His-
togram is calculated using three inputs (H, S and V), containing 8, 2 and 3 mem-
bership functions respectively, 8 × 2 × 3 = 48 combinations per Image-Block are
tested in parallel by a respective number of threads. Overall, in a single time step,
1,600 × 48 threads are activated. Similarly, in case of the 24-bin Fuzzy Histogram
(Fuzzy Brightness Indicator), four threads are employed simultaneously per Image-
Block.

When both outputs from the Fuzzy Brightness Indicator and the 10-bin Fuzzy
Histogram are produced, they are combined to form the [1 × 24] long Color Vector.
The following pseudo code describes the combination process.

123



922 L. Bampis et al.

Data: x ∈ [0, 7] ∪ N , y ∈ [0, 2] ∪ N , z=0
for 24 threads with threadIDx.x/y/z do

if threadIDx.x==0 then
24Bin Color Vector[threadIDx.x × 3 + threadIDx.y]=
10Bin Color Vector[threadIDx.y]

else
24Bin Color Vector[threadIDx.x × 3 + threadIDx.y]=
10Bin Color Vector[threadIDx.x +2] × 3Bin Brightness Vector[threadIDx.y]

end
end

Algorithm 1: The Color Combination Process.

According to CEDD, the first three bins from the 10-bin Histogram Unit are for-
warded unchanged to become the first three components of the 24-bin Color Vector.
As for the remaining bins, every color bin is multiplied with all three brightness bins
to produce a three-shaded representation of the particular color. In CUDA, we enable
24 threads to process as follows: three threads are responsible for transferring the first
three 10-bin values, and another set of three threads per color bin (i.e., three threads
for every one of the remaining seven colors) is enabled to execute the multiplication
of the brightness values with the color. All computations are implemented in parallel
and the 24-bin Color Vector is formed at once.

4.4 Texture information extraction unit

The inputs of the Texture Extraction Unit are the four Image Sub-Blocks that comprise
an Image Block. The Image Sub-Blocks are the required building blocks in this part of
the method, due to the texture masks’ design properties that were followed in CEDD.
All 1,600 Image Blocks that compose the input image are processed in parallel by
identical kernels.

The RGB components of each Image Sub-Block are transformed into the YIQ
color space. Only the Y (Luminance) component will be employed for the rest of the
procedure. All four extracted Y values become a [1 × 4] vector used for the application
of the Texture Masks. A single thread is enabled per mask. Thus, a total of five threads
are executed simultaneously to calculate the five different Texture Masks. The output
enters the Fuzzy Mapping system.

In short, the system will calculate which kind of texture is located in an Image
Block. The method that is applied starts by locating the Texture Mask with the highest
response. If a predefined threshold (hereby refereed to as T ) is not met by the highest
scoring mask, the whole Image Block is categorized as Non-Edge and no further
computations take place. Otherwise, the corresponding values of the five masks are
normalized and take part in the formation of the final Texture Vector if they surpass
their individually set threshold (T0, T1 and T2).

Six threads are activated to carry out the aforementioned Fuzzy Mapping system.
One is the Non-Edge detector, and the rest are the five mask-threads. The maximum
found value is stored in the shared device memory available for all threads to access.
Their contribution to the final Texture Vector depends partially on that maximum
value. Thus, all threads access the stored value to compare it with T simultaneously.

123



Real-time indexing for large image databases 923

When T is not met, the Non-Edge detector thread marks the first element of the
Texture Vector with 1 while the five mask-threads mark their corresponding elements
as 0. Otherwise, the Non-Edge detector is zeroed and the remaining threads use the
maximum value to normalize and compare their value to confirm if the response is
higher than the threshold. If so, they affect the final Texture Vector by marking as 1
their corresponding element.

4.5 Composing the CEDD descriptor

The 24-bin Color Vector extracted by the Color Unit and the 6-bin Texture Vector
extracted by the Texture Unit are combined to form a 144-bin vector that carries the
color and texture information of an Image Block. The combination procedure of the
two input vectors is governed by the same architectural principles as described earlier
when the 10-bin Fuzzy Histogram and Fuzzy Brightness vectors were combined.

All 1,600 Image Blocks produce their 144-bin vector in parallel. To do this we
activate 144 threads for every one of the 1,600 thread blocks. Every one of those
threads is responsible for multiplying one of the color’s bins with one of the texture’s
bin and store the result to the new vector. The vectors enter the Normalization Unit.
They are summed into a single vector and normalized. For the restriction of the CEDD
length, a 3 bits/bin quantization is used, constraining its total length to 144 × 3 = 432
bits.

The quantization procedure includes the bin-by-bin comparison of their normalized
value to a group of preset ranged quantization levels. Eight quantization levels, each
one of them occupying a specific sub-region of values are employed for every bin area,
which leads to a total of 32 levels for the whole vector. Employing the PPI method,
every bin of the image descriptor is handled by eight threads, each one responsible for
checking if the bin value belongs to the corresponding quantization region. Similarly
to the TSK-Fuzzy systems implementation, the quantized vector is extracted in a single
time step.

Finally, the output of the Quantization Unit is the CEDD descriptor of the image.
When the CEDD representation of an image is completed the CPU reads the next
image/frame from the hard drive and forwards it to the GPU. The procedure continues
until all images from a collection are indexed according to their CEDD descriptor.

We must highlight the fact that the descriptor is produced without any quality
degradation compared to the original CPU implementation. The produced descrip-
tors of images from all methods (CPU, GPU as well as the hybrid implementation
subsequently described) match exactly.

5 The hybrid implementation

The image indexing problem starts with an image collection or a frame collection
extracted from video streams. Image and video collections on-line increase their size
daily with new footage uploaded by users globally. Systems that try to index images
have to face a massive amount of already accumulated input data. Utilizing every
possible computational resource available proves to be imperative.

123



924 L. Bampis et al.

Most computer systems consists of two processing units the CPU and the GPU. In
this sub-section we propose a Hybrid implementation of the CEDD indexing method
that exploits both resources. After studying the CEDD algorithm together with GPU
parallelism and efficiency limitations, we broke down the CEDD method into two
successive parts. The computation of the average RGB values per Image Sub-Block
and the Color/ Texture Extraction, Vector Normalization and Quantization processes.

The first obvious benefit seized by this split, comes from the disengagement of
the image size from the needed transferred to the GPU data. The CPU calculates the
average RGB values for all the 1,600 × 4 Image Sub-Blocks, thus the transferred
data to the GPU are 3 × 6,400 values, independently of the initial image size. This
also radically decreases the required accesses (which were also not coalesced) from
threads to the Global Memory, a memory space significantly slower that the other
available memory spaces on a GPU. Furthermore, the splitting point was defined by
the following fact; after the summation of the Image Sub-Block pixel values, the
number of dependent with each other data that enter all other units of the method are
of a constant and much lower order of magnitude.

The most significant factor though, is the realization that the summation proce-
dure cannot be efficiently parallelized on any resource. Techniques in the literature
addressing this problem manage to speed up the procedure compared to a serial imple-
mentation, by partially parallelizing the computations. However, the execution time
of the summation either implemented on a CPU or “parallelized” on a GPU, depends
on the employed technology in either cases. As in many image processing problems,
our method introduces yet another delaying factor. The need to sum multiple times
small non-sequential parts of an array organized in image blocks.

Thus, if we have to choose a specific task to be assigned to another than the GPU
processing unit, then the summation, which is a not efficiently parallelized procedure,
would be our best option. The Appendix presents the step by step timing results of
the different parts of the implementation. The summation process (SumSubBlocks +
SumBlocks) takes up an average of 72 % of the total GPU execution time.

Even though the summation executed on the CPU is always slower than if imple-
mented on a GPU, by splitting the method and assigning different parts to two separate
resources enables us to pipeline the procedure. Figure 7a illustrates the Hybrid imple-
mentation. The first image in a collection or the first frame of a video stream enters
the CPU-Stage. Its average RGB values per Image Sub-Block are calculated and a [3
× 6400] vector of those values is sent to the GPU-Stage. Simultaneously, the second
image enters the CPU-Stage. A CPU-thread is employed to execute the CPU-Stage
procedures and another CPU-thread coordinates the GPU-Stage. A synchronization
barrier is set between the two stages, to ensure that the input data on both parts are
valid. As depicted in Fig. 7b, after the CEDD descriptor of the first image is composed,
a new descriptor is produced at every pipeline time-step. The time-step is defined by
the most time-consuming stage of the pipeline, i.e., the CPU-Stage.

The experimental results have confirmed that for systems armed with powerful
CPUs compared to their GPUs abilities, the pipelined approach succeeds a reduction
of the overall execution time compared to the GPU-only implementation, which is
more evident in small image sizes.

123



Real-time indexing for large image databases 925

Fig. 7 a The hybrid implementation flowchart. b The hybrid implementation pipelining

Table 2 The features of the four hardware setups

Setup1 Setup2 Setup3 Setup4

CPU model Intel pentium
dual-core

Intel core i5 Intel core i5 Intel core i7

Clock rate (GHz)/Mem.
Bits (bit)/Gflops

2.20/32/16 3.20/64/49 2.60/64/42 4.10/64/53

GPU model GeForce G
103M

GeForce
8400 GS

GeForce GT
620M

Quadro 4000

CUDA capability 1.1 1.1 2.1 2

Multiprocessors/cores
per MP

1/8 1/8 2/48 8/32

Max resident blocks
per MP

8 8 8 8

GPU clock rate (GHz) 1.60 1.62 1.25 0.95

Memory clock rate
(Mhz)/bus width (bit)

500/64 400/64 900/64 1,404/256

Max threads per block/per
MP

512/768 512/768 1,024/1,536 1,024/1,536

Warp size/GPU Gflops 32/38 32/43 32/240 32/486.4

6 Experimental results

The two implementations of the CEDD indexing method (GPU-only and Hybrid)
along with the original CPU-only (c# official implementation) method were tested on
four different computer systems summarized in Table 2. The different combinations
of CPU and GPU technologies will highlight the efficiency of the proposed models. In
particular, the first setup that consists of relatively weak technologies for both CPU and

123



926 L. Bampis et al.

Table 3 Frames per second indexed per image dimension, per implementation and per setup

Image dim. Setup1 Setup2

GPU-only Hybrid CPU-only GPU-only Hybrid CPU-only

640 × 480 25.63 28.68 8.86 28.54 32.05 13.39

800 × 600 19.34 20.43 3.67 23.28 25.57 9.79

1,024 × 768 11.83 13.88 2.70 12.51 15.70 5.35

1,280 × 1,024 9.38 9.14 1.46 8.63 9.96 3.47

1,600 × 1,200 6.23 6.12 1.08 5.32 6.63 2.22

2,048 × 1,536 4.53 3.80 0.60 4.21 4.31 1.29

2,048 × 2,048 2.66 2.72 0.44 3.63 3.88 1.19

Average 11.37 12.11 2.69 12.30 14.01 5.24

Image dim. Setup3 Setup4

GPU-only Hybrid CPU-only GPU-only Hybrid CPU-only

640 × 480 52.20 26.67 11.13 288.10 39.92 28.58

800 × 600 49.01 23.66 9.16 244.53 28.07 18.97

1,024 × 768 29.51 15.13 4.24 185.75 18.52 10.22

1,280 × 1,024 16.72 9.74 2.39 102.87 10.26 5.60

1,600 × 1,200 10.97 6.23 1.81 69.88 6.97 4.50

2,048 × 1,536 6.72 4.65 1.04 48.42 4.39 2.44

2,048 × 2,048 6.05 3.54 0.79 40.84 3.47 1.84

Average 24.45 12.80 4.37 140.06 15.94 10.31

Bold values indicate real-time executions while italicized ones highlight the best framerate achieved per
setup

GPU serves as a baseline experiment that evaluates the worst case scenario for all three
methods. The second setup is armed with a more powerful CPU compared to Setup1,
while the GPU model is of the same capability, with equal number of multiprocessors
(MP), cores and thread per MP. This setup is employed to give an edge to the CPU-
only and the Hybrid implementations in order to examine the benefits that derive —if
any—from a parallelized scheme on a weak GPU. The third setup tries to even out the
technologies for both CPU and GPU, to test all implementations on a contemporary
computer system. The fourth and final setup, offers a powerful CPU and a significantly
more advanced GPU compared to the other setups to fully explore the potential of the
parallelized indexing method.

The experiments on each setup were carried out for seven different image sizes,
ranging from VGA 640 × 480 pixels up to 2,048 × 2,048 pixels. Please note that the
execution time depends solely on the width and the height of the image (frame) to be
indexed as described earlier in Sect. 4.

Table 3 number of descriptors extracted per image dimension, per setup and per
implementation. In order to obtain robust results the indexing challenge comprised
1,000 images and was repeated 10 times per setup. The average execution time of those
10 iterations was used to calculate the Frames/s value. Table 4 illustrates the Speed-

123



Real-time indexing for large image databases 927

Ta
bl

e
4

A
ch

ie
ve

d
sp

ee
d-

up
%

pe
r

im
ag

e
si

ze
,p

er
im

pl
em

en
ta

tio
n

an
d

pe
r

se
tu

p

Im
ag

e
di

m
.(

%
)

Se
tu

p1
Se

tu
p2

Se
tu

p3
Se

tu
p4

G
PU

-o
nl

y
(%

)
H

yb
ri

d
(%

)
G

PU
-o

nl
y

(%
)

H
yb

ri
d(

%
)

G
PU

-o
nl

y
(%

)
H

yb
ri

d
(%

)
G

PU
-o

nl
y

(%
)

H
yb

ri
d

(%
)

64
0

×
48

0
28

9.
40

32
3.

70
21

3.
10

23
9.

40
24

7.
10

12
6.

20
1,

00
8.

10
13

9.
70

80
0

×
60

0
52

7.
00

55
6.

80
23

7.
60

26
1.

10
53

5.
20

25
8.

40
1,

28
9.

40
14

8.
00

1,
02

4
×

76
8

43
8.

40
51

4.
40

23
4.

10
29

3.
70

69
6.

20
35

6.
90

18
18

.2
0

18
1.

30

1,
28

0
×

1,
02

4
64

0.
80

62
4.

60
24

8.
90

28
7.

10
69

8.
70

40
6.

90
1,

83
8.

50
18

3.
30

1,
60

0
×

1,
20

0
57

6.
20

56
6.

00
23

9.
20

29
8.

20
60

6.
60

34
4.

40
1,

55
2.

40
15

4.
80

2,
04

8
×

1,
53

6
75

5.
70

63
4.

20
32

7.
10

33
4.

70
64

4.
40

44
6.

00
19

84
.1

0
17

9.
70

2,
04

8
×

2,
04

8
60

3.
10

61
6.

10
30

5.
20

32
5.

90
76

3.
20

44
6.

60
2,

22
1.

40
18

8.
70

B
ol

d
va

lu
es

in
di

ca
te

th
e

im
pl

em
en

ta
tio

n
th

at
ac

hi
ev

es
th

e
be

st
sp

ee
d-

up
fo

r
ea

ch
se

tu
p

123



928 L. Bampis et al.

up%. Speed-up refers to how much a parallel algorithm is faster than the corresponding
sequential algorithm and is calculated as: Sp = T1/Tp. p is number of processors,
T1 the execution time of the sequential algorithm and Tp is the execution time of the
parallel algorithm with p processors.

Real-time indexing (i.e., at least 25 fps for VGA frame sizes) is achieved on all setups
for both proposed implementations (GPU-only and Hybrid). More specifically, for the
first setup the experiments prove that both implementations that employ the GPU
manage to significantly speed-up the indexing process (up to 7.5 times). Furthermore,
an important observation can be obtained through this setup; pipelining the procedure
and exploiting all available resources through the proposed hybrid implementation
allows for better execution time for small frame sizes. Generally, the GPU performs
better when the device occupancy is high. A clear example of the aforementioned
statement is observed in our first setup. The overall available threads to be activated in
parallel are 768. The necessary threads per Thread Block due to the Reduction method
that is employed for the summation of a Sub-Block’s values are calculated as follows:

Num of Threads = 2n, where n ∈ N

Num of Threads ≤ Max Threads per Block (1)

Moreover, the maximum number of activated in parallel Thread Blocks is 8. Thus,
in order to achieve an efficient GPU implementation on the first setup the following
formulas must be met:

Max Threads per MP × MP

Num of Threads
∈ N∗ (2)

A = Max Resident Blocks per MP × MP

At = Num of Threads × A

At ≤ Max Threads per MP × MP (3)

The three last frame sizes meet these criteria and allow the GPU-only implemen-
tation to perform slightly better.

The advantages of the pipelined hybrid approach are more evident in Setup2. The
powerful CPU combined with a weak GPU allows for the hybrid implementation not
only to achieve real-time performance for even larger frame sizes than before (800 ×
600 pixels), but also outperforms the GPU-only implementation on all occasions. The
effect that the higher thread occupancy has on the execution time is still noticeable
for the three last frame sizes. The GPU-only implementation manages to narrow the
performance gab up to a point where it directly competes with the efficiency of the
hybrid model.

The rest of the setups focus on highlighting the advantages of parallel program-
ming on powerful GPUs. In Setup3 the GPU has a Computational Capability 2.×
and presents therefore higher performance with a total of 1,536 × 2 available Max
threads, 1,024 Max threads/block and 16 maximum resident blocks while Setup4 has
an impressive total of eight available MPs which enables a higher parallel computa-
tional power through the richer resources. Starting our comments on the third setup, the
GPU-only implementation presents a constant higher performance against the other

123



Real-time indexing for large image databases 929

F
ig

.8
A

ve
ra

ge
in

de
xi

ng
tim

e
fo

r
1,

00
0

im
ag

es
fo

r
(a

)
Se

tu
p1

,b
Se

tu
p2

,c
Se

tu
p3

an
d

d
Se

tu
p4

123



930 L. Bampis et al.

Fig. 9 Execution time improvement over all setups

models. Real-time indexing of at least 25 frames per second is achieved for even larger
frame sizes of 1,024 × 768 pixels. As before, the frame sizes that meet the criteria set
by formulas 1–3 take advantage of the available resources and therefore the highest
speed-up percentage occurs for the 2,048 × 2,048 pixels frame size (accelerating the
procedure 7.6 times).

Finally, the last setup which is armed with a very powerful GPU, was employed to
show off the power of the GPU-only implementation. The available resources allow for
real-time indexing of all the tested frame sizes. The achieved speed-up percentage is of
a much greater order of magnitude compared to all other setups and implementations,
as expected (accelerating the image indexing 22.2 times). The calculated average
frames-per-second value over all tested frame sizes states that in the case of databases
that consist of varying images sizes of the most commonly used formats, the GPU-only
implementation is able to losslessly index about 140 images per second.

Figure 8 depicts the indexing time obtained for 1,000 images per image size per
setup. As expected, the indexing time that the CPU implementation requires, increases
proportionally along with the image sizes for all setups. The Hybrid implementation
presents an analogical linear behavior, because the execution time, due to the pipelined
scheme employed, is essentially the time-step of the summation process that is handled
by the CPU.

The indexing time of the GPU-only implementation is very closely dependent
on the available resources that the technology offers. Moreover, a number of other
factors that affect the overall device occupancy can change the execution time of the
GPU-only method and occasionally break the expected proportionally behavior of the
achieved accelerations as image sizes increase. Figure 9 presents the execution time
improvement over all setups when indexing is handled by the GPU. The improvement
of the indexing execution time remains consistent over all image sizes per setup.
The more abundant the GPU resources are, the more stable the improvement. When
the GPU resources are limited (Setup1, Setup2) the outcome is subject to the device
occupancy, and thus the fluctuations in the experimental results.

123



Real-time indexing for large image databases 931

The experimental results confirm the great acceleration that is achieved when par-
allelizing the indexing method. The frame rate (i.e., execution time per image size)
obtained by the strongest CPU model (Setup4) are always lower than the correspond-
ing frame rate achieved by employing even the weakest GPU (Setup1). As anticipated,
the proposed Hybrid implementation makes excellent use of the available computa-
tional resources by passing the summation part of the algorithm, which is by default a
non-fully parallelizable procedure, to the CPU in a pipelined scheme. Thus, in cases
where the GPU offers slim resources (Setup1, Setup2) the Hybrid implementation
surpasses the limitations by simultaneously occupying the CPU and in many cases
outperforms both CPU-only and GPU-only approaches.

7 Conclusion

When planning our implementation strategy two aspects were taken under consider-
ation; locating the parallelization bottlenecks and making the implementation cost-
effecting, i.e., comprehending the computational resource limitations that may exist.
Two approaches were proposed in this paper. The first one parallelizes the whole
method exclusively using the GPU, while the second one splits the procedure employ-
ing both CPU and GPU simultaneously in a pipelined scheme. It is important to note
that the extracted descriptors from the CPU, the GPU and the Hybrid implementation
match with no deflection in accuracy. Experiments were carried out on four different
computational setups assembled to test the implementations on different combinations
of available resources.

Real-time indexing was achieved by both proposed GPU involving implementations
in all occasions. Real-time or higher frame rates were recorded for even higher resolu-
tions, depending on the computational resources. The GPU-only proposed technique
gained up to 22 times acceleration when compared to the CPU-only implementa-
tion, while the Hybrid implementation achieved a peak of 6.34 speed-up. Overall, the
Hybrid approach excels when the available CPU technology is advanced compared to
the GPU technology employed. Thus, we propose that a hybrid architecture should be
considered when a method presents parts that are by default not fully parallelizable but
can be independently assigned to the CPU in order to improve the total execution time.
Moreover, in cases where the input data consists of a collection of items (e.g., image
databases or video flow) a pipelined strategy, as the one proposed in this paper, where
computations are distributed to all available resources can also lead to a low-cost and
efficient solution.

Acknowledgments This research has been co-financed by the European Union (European Social Fund-
ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the
National Strategic Reference Framework (NSRF), Research Funding Program: Heracleitus II. Investing in
knowledge society through the European Social Fund.

Appendix

The following Tables 5, 6, 7, and 8 are illustrating the step-by-step timing (in seconds
for 1,000 images) of the GPU-only implementation.

123



932 L. Bampis et al.

Ta
bl

e
5

St
ep

-b
y-

st
ep

tim
es

ob
ta

in
ed

by
Se

tu
p1

64
0

×
48

0
80

0
×

60
0

1,
02

4
×

76
8

1,
28

0
×1

,0
24

1,
60

0
×

1,
20

0
2,

04
8

×
1,

53
6

2,
04

8
×

2,
04

8

C
PU R

ea
d

im
ag

e
19

.5
2

23
.8

5
54

.2
9

64
.6

7
78

.9
3

12
7.

15
19

4.
94

R
ea

d
im

ag
e

(%
ex

ec
.t

im
e)

50
46

64
61

49
58

52

G
PU Su

m
Su

bB
lo

ck
s

12
.5

1
18

.1
7

21
.3

6
34

.9
7

74
.6

1
86

.7
6

17
3.

04

Su
m

B
lo

ck
s

0.
35

0.
52

0.
60

0.
41

0.
48

0.
48

0.
77

Su
m

Su
bB

lo
ck

s
+

Su
m

B
lo

ck
s

(%
ex

ec
.t

im
e)

66
67

73
84

92
93

96

To
Y

IQ
0.

24
0.

31
0.

30
0.

23
0.

24
0.

23
0.

45

To
H

SV
+

Fu
zz

y1
0

1.
30

1.
33

1.
33

1.
32

1.
30

1.
33

1.
50

To
H

SV
+

Fu
zz

yB
ri

gh
tn

es
s

0.
33

0.
36

0.
38

0.
31

0.
32

0.
31

0.
47

A
pp

ly
M

as
ks

+
C

re
at

eT
ex

tu
re

V
ec

to
r

0.
31

1.
33

0.
40

0.
34

0.
32

0.
32

0.
36

C
re

at
e2

4B
in

C
ol

or
V

ec
to

r
0.

76
0.

90
0.

88
0.

74
0.

72
0.

72
0.

77

C
re

at
eC

E
D

D
14

4B
in

1.
60

2.
25

2.
23

1.
61

1.
55

1.
58

1.
60

Su
m

16
00

T
O

2
1.

83
2.

42
2.

42
1.

81
1.

78
1.

78
1.

81

Su
m

2T
O

1
0.

13
0.

14
0.

17
0.

15
0.

14
0.

14
0.

16

A
pp

ly
Q

ua
nt

iz
at

io
n

0.
14

0.
15

0.
15

0.
12

0.
14

0.
13

0.
15

G
PU

−
10

00
fr

am
es

19
.4

9
27

.8
6

30
.2

2
42

.0
0

81
.6

1
93

.7
7

18
1.

07

G
PU

+
C

PU
−

to
ta

l(
1,

00
0

fr
am

es
)

39
.0

1
51

.7
1

84
.5

1
10

6.
66

16
0.

54
22

0.
92

37
6.

00

123



Real-time indexing for large image databases 933

Ta
bl

e
6

St
ep

-b
y-

st
ep

tim
es

ob
ta

in
ed

by
Se

tu
p2

64
0

×
48

0
80

0
×

60
0

1,
02

4
×

76
8

1,
28

0
×

1,
02

4
1,

60
0

×
1,

20
0

2,
04

8
×

1,
53

6
2,

04
8

×
2,

04
8

C
PU R

ea
d

im
ag

e
7.

78
7.

10
40

.3
8

61
.4

1
90

.9
3

12
8.

72
13

9.
43

R
ea

d
im

ag
e

(%
ex

ec
.t

im
e)

22
17

51
53

48
54

51

G
PU Su

m
Su

bB
lo

ck
s

13
.4

5
20

.8
2

24
.5

2
39

.9
6

82
.3

3
92

.2
3

12
0.

60

Su
m

B
lo

ck
s

3.
15

3.
94

4.
32

4.
39

4.
69

6.
51

4.
64

Su
m

Su
bB

lo
ck

s
+

Su
m

B
lo

ck
s

(%
ex

ec
.t

im
e)

61
69

73
82

90
91

92

To
Y

IQ
0.

48
0.

53
0.

48
0.

33
0.

50
0.

53
0.

51

To
H

SV
+

Fu
zz

y1
0

1.
21

1.
24

1.
24

1.
20

1.
19

1.
16

1.
23

To
H

SV
+

Fu
zz

yB
ri

gh
tn

es
s

0.
68

0.
61

0.
63

0.
67

0.
46

0.
46

0.
51

A
pp

ly
M

as
ks

+
C

re
at

eT
ex

tu
re

V
ec

to
r

0.
58

0.
52

0.
55

0.
51

0.
46

0.
46

0.
49

C
re

at
e2

4B
in

C
ol

or
V

ec
to

r
1.

18
1.

21
1.

33
1.

17
1.

19
1.

07
1.

18

C
re

at
eC

E
D

D
14

4B
in

3.
09

3.
14

3.
22

3.
04

2.
97

2.
95

3.
07

Su
m

16
00

T
O

2
2.

84
3.

15
2.

61
2.

57
2.

61
2.

54
2.

84

Su
m

2T
O

1
0.

46
0.

55
0.

49
0.

42
0.

61
0.

69
0.

71

A
pp

ly
Q

ua
nt

iz
at

io
n

0.
13

0.
17

0.
16

0.
16

0.
14

0.
15

0.
17

G
PU

−
10

00
fr

am
es

27
.2

7
35

.8
6

39
.5

5
54

.4
1

97
.1

4
10

8.
74

13
5.

94

G
PU

+
C

PU
−

to
ta

l(
1,

00
0

fr
am

es
)

35
.0

5
42

.9
6

79
.9

3
11

5.
82

18
8.

07
23

7.
46

27
5.

37

123



934 L. Bampis et al.

Ta
bl

e
7

St
ep

-b
y-

st
ep

tim
es

ob
ta

in
ed

by
Se

tu
p3

64
0

×
48

0
80

0
×

60
0

1,
02

4
×

76
8

1,
28

0
×

1,
02

4
1,

60
0

×
1,

20
0

2,
04

8
×

1,
53

6
2,

04
8

×
2,

04
8

C
PU R

ea
d

im
ag

e
13

.8
9

15
.2

8
28

.0
3

53
.4

6
82

.3
4

14
0.

05
14

9.
90

R
ea

d
im

ag
e

(%
ex

ec
.t

im
e)

72
75

83
89

90
94

91

G
PU Su

m
Su

bB
lo

ck
s

3.
22

3.
31

3.
81

4.
26

6.
30

6.
79

13
.5

0

Su
m

B
lo

ck
s

0.
12

0.
10

0.
10

0.
08

0.
09

0.
09

0.
08

Su
m

Su
bB

lo
ck

s+
Su

m
B

lo
ck

s
(%

ex
ec

.t
im

e)
63

66
67

68
73

78
87

To
Y

IQ
0.

07
0.

07
0.

09
0.

04
0.

40
0.

11
0.

05

To
H

SV
+

Fu
zz

y1
0

0.
37

0.
24

0.
26

0.
22

0.
39

0.
25

0.
25

To
H

SV
+

Fu
zz

yB
ri

gh
tn

es
s

0.
07

0.
13

0.
09

0.
05

0.
18

0.
08

0.
14

A
pp

ly
M

as
ks

+
C

re
at

eT
ex

tu
re

V
ec

to
r

0.
05

0.
07

0.
12

0.
14

0.
14

0.
09

0.
12

C
re

at
e2

4B
in

C
ol

or
V

ec
to

r
0.

11
0.

11
0.

19
0.

11
0.

06
0.

10
0.

15

C
re

at
eC

E
D

D
14

4B
in

0.
19

0.
17

0.
26

0.
23

0.
27

0.
27

0.
22

Su
m

16
00

T
O

2
0.

94
0.

79
0.

84
1.

04
0.

79
0.

89
0.

89

Su
m

2T
O

1
0.

06
0.

10
0.

07
0.

10
0.

05
0.

09
0.

04

A
pp

ly
Q

ua
nt

iz
at

io
n

0.
07

0.
04

0.
02

0.
07

0.
12

0.
09

0.
11

G
PU

−
1,

00
0

fr
am

es
5.

27
5.

13
5.

85
6.

34
8.

79
8.

85
15

.5
4

G
PU

+
C

PU
−

to
ta

l(
1,

00
0

fr
am

es
)

19
.1

6
20

.4
1

33
.8

8
59

.8
0

91
.1

3
14

8.
90

16
5.

44

123



Real-time indexing for large image databases 935

Ta
bl

e
8

St
ep

-b
y-

st
ep

tim
es

ob
ta

in
ed

by
Se

tu
p4

64
0

×
48

0
80

0
×

60
0

1,
02

4
×

76
8

1,
28

0
×

1,
02

4
1,

60
0

×
1,

20
0

2,
04

8
×

1,
53

6
2,

04
8

×
2,

04
8

C
PU R

ea
d

im
ag

e
1.

60
1.

78
3.

32
7.

39
10

.6
9

17
.0

6
18

.1
7

R
ea

d
im

ag
e

(%
ex

ec
.t

im
e)

46
44

62
76

75
83

74

G
PU Su

m
Su

bB
lo

ck
s

1.
03

1.
62

1.
30

1.
58

2.
85

2.
93

5.
58

Su
m

B
lo

ck
s

0.
05

0.
00

0.
08

0.
05

0.
05

0.
08

0.
05

Su
m

Su
bB

lo
ck

s+
Su

m
B

lo
ck

s
(%

ex
ec

.t
im

e)
57

70
66

70
80

84
89

To
Y

IQ
0.

03
0.

03
0.

06
0.

05
0.

03
0.

05
0.

02

To
H

SV
+

Fu
zz

y1
0

0.
13

0.
17

0.
08

0.
09

0.
11

0.
11

0.
17

To
H

SV
+

Fu
zz

yB
ri

gh
tn

es
s

0.
05

0.
02

0.
03

0.
03

0.
02

0.
02

0.
05

A
pp

ly
M

as
ks

+
C

re
at

eT
ex

tu
re

V
ec

to
r

0.
00

0.
05

0.
05

0.
03

0.
00

0.
03

0.
05

C
re

at
e2

4B
in

C
ol

or
V

ec
to

r
0.

08
0.

02
0.

05
0.

03
0.

11
0.

03
0.

02

C
re

at
eC

E
D

D
14

4B
in

0.
08

0.
05

0.
06

0.
11

0.
11

0.
08

0.
05

Su
m

16
00

T
O

2
0.

38
0.

31
0.

32
0.

27
0.

22
0.

22
0.

31

Su
m

2T
O

1
0.

03
0.

03
0.

03
0.

05
0.

08
0.

02
0.

00

A
pp

ly
Q

ua
nt

iz
at

io
n

0.
03

0.
02

0.
02

0.
05

0.
05

0.
03

0.
05

G
PU

−
1,

00
0

fr
am

es
1.

87
2.

31
2.

07
2.

33
3.

62
3.

59
6.

32

G
PU

+
C

PU
−

to
ta

l(
1,

00
0

fr
am

es
)

3.
47

4.
09

5.
38

9.
72

14
.3

1
20

.6
5

24
.4

9

123



936 L. Bampis et al.

References

1. Datta R, Joshi D, Li J, Wang JZ (2008) Image retrieval: ideas, influences, and trends of the new age.
ACM Comput Surv 40(2):5:1–5:60

2. Wetzel A (1997) Computational aspects of pathology image classification and retrieval. J Supercomput
11(3):279–293

3. Ren R, Collomosse J, Jose J (2011) A bovw based query generative model. In: Proceedings of the 17th
international conference on advances in multimedia modeling. Volume Part I, ser. MMM’11, 2011, pp
118–128

4. Lux M, Chatzichristofis S (2008) Lire: lucene image retrieval: an extensible java cbir library. In:
Proceeding of the 16th ACM international conference on multimedia. ACM, 2008, pp 1085–1088

5. Chatzichristofis S, Iakovidou C, Boutalis Y, Marques O (2013) Co.vi.wo.: color visual words based on
non-predefined size codebooks. IEEE Trans Cybernet 43(1):192–205

6. Lazebnik S, Schmid C, Ponce J (2006) Beyond bags of features: spatial pyramid matching for recog-
nizing natural scene categories. CVPR 2:2169–2178

7. Zagoris K, Chatzichristofis SA, Arampatzis A (2011) Bag-of-visual-words vs global image descriptors
on two-stage multimodal retrieval. In: Proceedings of the 34th international ACM SIGIR conference
on research and development in information Retrieval, pp 1251–1252

8. Amanatiadis A, Kaburlasos V, Gasteratos A, Papadakis S (2011) Evaluation of shape descriptors for
shape-based image retrieval. IET Image Process 5(5):493–499

9. Sevilla J, Bernabe S, Plaza A (2014) Unmixing-based content retrieval system for remotely sensed
hyperspectral imagery on GPUs. J Supercomput, pp 1–12

10. Park IK, Singhal N, Lee MH, Cho S, Kim CW (2011) Design and performance evaluation of image
processing algorithms on gpus. IEEE Trans Parallel Distrib Syst 22(1):91–104

11. Antikainen J, Havel J, Josth R, Herout A, Zemcík P, Hauta-Kasari M, Zemcík P (2011) Nonnegative
tensor factorization accelerated using GPGPU. IEEE Trans Parallel Distrib Syst 22(7):1135–1141

12. Zhu L, Jin H, Zheng R, Feng X (2013) Effective naive bayes nearest neighbor based image classification
on GPU. J Supercomput, pp 1–29

13. Risojević V, Babić Z, Dobravec T, Bulić P et al (2013) A GPU implementation of a structural-similarity-
based aerial-image classification. J Supercomput 65(2):978–996

14. van de Sande KEA, Gevers T, Snoek CGM (2011) Empowering visual categorization with the GPU.
IEEE Trans Multimed 13(1):60–70

15. Alvarado R, Tapia JJ, Rolón C (2013) Medical image segmentation with deformable models on graphics
processing units. J Supercomput, pp 1–26

16. Song B, Tang W, Nguyen T-D, Hassan MM, Huh EN (2013) An optimized hybrid remote display proto-
col using GPU-assisted m-JPEG encoding and novel high-motion detection algorithm. J Supercomput
66(3):1729–1748

17. López MB, Nykänen H, Hannuksela J, Silvén O, Vehviläinen M (2011) Accelerating image recognition
on mobile devices using GPGPU. In:Proceedings of SPIE 7872:78720R

18. Amanatiadis A, Bampis L, Gasteratos A (2014) Accelerating image super-resolution regression by a
hybrid implementation in mobile devices. In: Proceedings IEEE international conference on consumer
electronics, pp 335–336

19. Nalpantidis L, Amanatiadis A, Sirakoulis G, Gasteratos A (2011) Efficient hierarchical matching
algorithm for processing uncalibrated stereo vision images and its hardware architecture. IET Image
Process. 5(5):481–492

20. Chatzichristofis S, Zagoris K, Boutalis Y, Papamarkos N (2010) Accurate image retrieval based on
compact composite descriptors and relevance feedback information. Int J Pattern Recogn Artif Intell
24(2):207–244

21. Jiang Y, Xu X, Terlecky P, Abdelzaher T, Bar-Noy A, Govindan R (2013) Mediascope: selective on-
demand media retrieval from mobile devices. In: Proceedings of the 12th international conference
on information processing in sensor networks, ser. IPSN ’13. New York, NY, USA: ACM, 2013, pp
289–300

22. Zha Z-J, Tian Q, Cai J, Wang Z (2013) Interactive social group recommendation for flickr photos.
Neurocomputing 105:30–37

23. van Leuken RH, Pueyo LG, Olivares X, van Zwol R (2009) Visual diversification of image search
results. In: WWW. ACM, 2009, pp 341–350

123



Real-time indexing for large image databases 937

24. Jin X, Gallagher AC, Cao L, Luo J, Han J (2010) The wisdom of social multimedia: using flickr for
prediction and forecast. In: ACM Multimedia, 2010, pp 1235–1244

25. Daras P, Semertzidis T, Makris L, Strintzis MG (2010) Similarity content search in content centric
networks. In: ACM multimedia, 2010, pp 775–778

26. Iakovidou C, Anagnostopoulos N, Kapoutsis AC, Boutalis YS, Chatzichristofis SA (2014) Searching
images with MPEG-7 (& mpeg-7-like) powered localized descriptors: the SIMPLE answer to effective
content based image retrieval. In 2014 12th International workshop on content-based multimedia
indexing (CBMI), Klagenfurt, Austria, June 18–20(2014), 2014, pp 1–6. [Online]. doi:10.1109/CBMI.
2014.6849821

27. Lux M, Marques O, Schoffmann K, Boszormenyi L, Lajtai G (2010) A novel tool for summarization
of arthroscopic videos. Multimed Tools Appl 46(2–3):521–544

28. Rafailidis D, Manolopoulou S, Daras P (2013) A unified framework for multimodal retrieval. Pattern
Recogn 46(12):3358–3370

29. Piras L, Giacinto G (2012) Synthetic pattern generation for imbalanced learning in image retrieval.
Pattern Recogn Lett 33(16):2198–2205

30. Vallet D, Cantador I, Jose JM (2013) Exploiting semantics on external resources to gather visual
examples for video retrieval. Int J Multimed Inf Retriev 2(2):117–130

31. Daras P, Manolopoulou S, Axenopoulos A (2012) Search and retrieval of rich media objects supporting
multiple multimodal queries. IEEE Trans Multimed 14(3–2):734–746

32. Yu J, Jin X, Han J, Luo J (2011) Collection-based sparse label propagation and its application on social
group suggestion from photos. ACM TIST 2(2):12

33. Chatzichristofis S, Boutalis Y (2008) CEDD: color and edge directivity descriptor: a compact descriptor
for image indexing and retrieval. LNCS, Computer Vision Systems

34. Wang J, Li J, Wiederhold G (2001) Simplicity: semantics-sensitive integrated matching for picture
libraries. IEEE Transactions on pattern analysis and machine intelligence, pp 947–963

35. Schaefer G, Stich M (2004) UCID-an uncompressed colour image database. Storage and retrieval
methods and applications for multimedia 2004, vol 5307, pp 472–480

36. Chatzichristofis S, Boutalis Y (2010) Content based radiology image retrieval using a fuzzy rule based
scalable composite descriptor. Multimed Tools Appl 46:493–519

37. Chatzichristofis S, Arampatzis A, Boutalis Y (2010) Investigating the behavior of compact composite
descriptors in early fusion, late fusion and distributed image retrieval. Radioengineering 19(4):725

38. Chatzichristofis SA, Boutalis YS, Lux M (2010) SpCD–spatial color distribution descriptor. A fuzzy
rule based compact composite descriptor appropriate for hand drawn color sketches retrieval. In:
ICAART, 2010, pp 58–63

39. Manjunath B, Ohm J, Vasudevan V, Yamada A (2001) Color and texture descriptors. IEEE Trans
Circuits Syst video Technol 11(6):703–715

40. Huang J, Kumar S, Mitra M, Zhu W (2001) Image indexing using color correlograms. US Patent
6,246,790, 12, pp 1–16

41. Thomee B, Bakker EM, Lew MS (21010) Top-surf: a visual words toolkit. In ACM multimedia, 2010,
pp 1473–1476

42. Sartori J, Kumar R (2013) Branch and data herding: reducing control and memory divergence for
error-tolerant gpu applications. IEEE Trans Multimed 15(2):279–290

43. van der Laan WJ, Jalba AC, Roerdink JB (2011) Accelerating wavelet lifting on graphics hardware
using CUDA. IEEE Trans Parallel Distrib Syst 22(1):132–146

44. Li R, Saad Y (2013) Gpu-accelerated preconditioned iterative linear solvers. J Supercomput 63(2):443–
466

45. Thibault JC, Senocak I (2012) Accelerating incompressible flow computations with a pthreads-CUDA
implementation on small-footprint multi-GPU platforms. J Supercomput 59(2):693–719

46. Cano A, Luna JM, Ventura S (2013) High performance evaluation of evolutionary-mined association
rules on GPUS. J Supercomput 66(3):1438–1461

123

http://dx.doi.org/10.1109/CBMI.2014.6849821
http://dx.doi.org/10.1109/CBMI.2014.6849821

