School of Information Sciences

Articles

2017-05

## þÿ A LoCATe based visual place recognition system for mobile robotics and GPGPUs

Bampis, Loukas

John Wiley & Sons Ltd

http://hdl.handle.net/11728/10137

Downloaded from HEPHAESTUS Repository, Neapolis University institutional repository



| Title:    | A LoCATe-based visual place recognition system for mobile robotics and GPGPUs                                            |
|-----------|--------------------------------------------------------------------------------------------------------------------------|
| Year:     | 2017                                                                                                                     |
| Author:   | Loukas Bampis,Savvas Chatzichristofis,Chryssanthi Iakovidou,<br>Angelos Amanatiadis,Yiannis Boutalis,Antonios Gasteratos |
| Abstract: | In this paper, a novel visual Place Recognition approach is evaluated based on                                           |
|           | a visual vocabulary of the Color and Edge Directivity Descriptor (CEDD) to                                               |
|           | address the loop closure detection task. Even though CEDD was initially                                                  |
|           | designed so as to globally describe the color and texture information of an                                              |
|           | input image addressing Image Indexing and Retrieval tasks, its scalability on                                            |
|           | characterizing single feature points has already been proven. Thus, instead of                                           |
|           | using CEDD as a global descriptor, we adopt a bottom-up approach and use its                                             |
|           | localized version, Local Color And Texture dEscriptor, as an input to a state-                                           |
|           | of-the-art visual Place Recognition technique based on Visual Word Vectors.                                              |
|           | Also, we use a parallel execution pipeline based on a previous work of ours                                              |
|           | using the well established General Purpose Graphics Processing Unit (GPGPU)                                              |
|           | computing. Our experiments show that the usage of CEDD as a local descriptor                                             |
|           | produces high accuracy visual Place Recognition results, while the                                                       |
|           | parallelization used allows for a real-time implementation even in the case of a                                         |
|           | low-cost mobile device.                                                                                                  |