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In this paper a new set of descriptors appropriate for image indexing and retrieval is proposed.
The proposed descriptors address the tremendously increased need for e±cient content-based

image retrieval (CBIR) in many application areas such as the Internet, biomedicine, commerce

and education. These applications commonly store image information in large image databases

where the image information cannot be accessed or used unless the database is organized to
allow e±cient storage, browsing and retrieval. To be applicable in the design of large image

databases, the proposed descriptors are compact, with the smallest requiring only 23 bytes per

image. The proposed descriptors' structure combines color and texture information which are

extracted using fuzzy approaches. To evaluate the performance of the proposed descriptors,
the objective Average Normalized Modi¯ed Retrieval Rank (ANMRR) is used. Experiments

conducted on ¯ve benchmarking image databases demonstrate the e®ectiveness of the proposed

descriptors in outperforming other state-of-the-art descriptors. Also, a Auto Relevance Feed-
back (ARF) technique is introduced which is based on the proposed descriptors. This technique

readjusts the initial retrieval results based on user preferences improving the retrieval score

signi¯cantly. An online demo of the image retrieval system img(Anaktisi) that implements the

proposed descriptors can be found at http://www.anaktisi.net.

Keywords: Image retrieval; image indexing; compact descriptors; low level features; color and

texture histogram; relevance feedback; fuzzy techniques.

1. Introduction

The rapid growth of digital images through the widespread popularization of com-

puters and the Internet makes the development of an e±cient image retrieval

technique imperative. Content-based image retrieval, known as CBIR, extracts

several features that describe the content of the image, mapping the visual content of

the images into a new space called the feature space. The feature space values for a
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given image are stored in a descriptor that can be used for retrieving similar images.

The key to a successful retrieval system is to choose the right features that represent

the images as accurately and uniquely as possible. The features chosen have to be

discriminative and su±cient in describing the objects present in the image. To

achieve these goals, CBIR systems use three basic types of features: color features,

texture features and shape features. It is very di±cult to achieve satisfactory

retrieval results using only one of these feature types. To date, many proposed

retrieval techniques adopt methods in which more than one feature type are

involved. For instance, color, texture and shape features are used in both IBM's

QBIC14 and MIT's Photobook.39 QBIC uses color histograms, a moment-based

shape feature, and a texture descriptor. Photobook uses appearance features, texture

features and 2D shape features. Other state-of-the-art CBIR systems include

SIMBA,45 CIRES,22 SIMPLIcity,49 IRMA,29 FIRE,8 MIRROR,51 and also those in

Refs. 21, 28 and 47. A cumulative body of research presents extraction methods for

these feature types.

In most retrieval systems that combine two ormore feature types, such as color and

texture, independent vectors are used to describe each kind of information. It is

possible to achieve very good retrieval scores by increasing the size of the descriptors,

but this technique has several drawbacks. If the descriptor has hundreds or even

thousands of bins, it may be of no practical use because the retrieval procedure is

signi¯cantly delayed. Also, increasing the size of the descriptor increases the storage

requirements which may have a signi¯cant penalty for databases that containmillions

of images. Many presented methods limit the length of the descriptor to a small

number of bins,10,27 leaving the possible factor values in decimal, non-quantized form.

The Moving Picture Experts Group (MPEG) de¯nes a standard for content-

based access to multimedia data in their MPEG-7 standard.23,35 This standard

identi¯es a set of image descriptors that maintain a balance between the size of the

feature and the quality of the retrieval results.12,13,15,30,51

In this paper a new set of descriptors is proposed and a method for their im-

plementation in a retrieval system is described. The proposed descriptors have been

designed with particular attention to their size and storage requirements, keeping

them as small as possible without compromising their discriminating ability. The

proposed descriptors incorporate color and texture information into one histogram

while keeping their sizes between 23 and 74 bytes per image. The experimental

results show that the performance of the proposed descriptors is better than the

performance of the similarly-sized MPEG-7 descriptors.

The rest of the paper is organized as follows: Section 2 describes a novel technique

for color information extraction. The technique employs a set of fuzzy rules to extract

a fuzzy-linking histogram in the HSV color space. A three-input fuzzy system

employs 20 rules to generate a ten-bin quantized histogram where each bin corre-

sponds to a preset color. The number of pixels assigned to each bin is stored in a

feature vector. In an optional second step, a two-input fuzzy system uses four new
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rules to transform the ten-bin histogram into a 24-bin histogram, extracting infor-

mation related to the hue of each color.

In Sec. 3, two novel techniques are proposed for texture information extraction.

The ¯rst one uses coe±cients from the high-frequency bands derived from the Haar

Wavelet transform,49 creating an eight-bin histogram. The second technique employs

the ¯ve digital ¯lters proposed by theMPEG-7 EdgeHistogramDescriptor6 creating a

six-bin histogram. In both methods each bin corresponds to a preset texture form.

Section 4 describes in detail how the systems are combined to produce the pro-

posed descriptors. Section 5 demonstrates the reduction of the proposed descriptors'

storage requirements by using the Gustafson Kessel18 fuzzy classi¯er to quantize and

map the values of the proposed features from the real number space ½0; 1� to the

integer interval space ½0; 7�.
Section 6 contains the experimental results of an image retrieval system that uses

either the proposed features or the MPEG-7 features on ¯ve benchmarking data-

bases. The objective measure ANMRR (Averaged Normalized Modi¯ed Retrieval

Rank)35 is used to evaluate the system performance and compare the proposed

descriptors to the MPEG-7 standard descriptors.

In Sec. 7, an Auto Relevance Feedback (ARF) technique is introduced which is

based on the proposed descriptors. This technique readjusts the initial retrieval

results based on user preferences improving the retrieval score signi¯cantly. Finally,

the conclusions are given in Sec. 8.

2. Color Information Extraction

Color is a low level feature that is widely used in Content Based Image Retrieval

systems. Several approaches have been used to describe the color information that

appears in the images. In most cases, color histograms are used, which on the one

hand are easily extracted from the images and, on the other hand, present inde-

pendency on some distortions such as rotation and scaling.37

An easy way to extract color features from an image is by linking the color space

channels. Linking is de¯ned as the combination of more than one histogram to a

single one. One example is the Scalable Color Descriptor (SCD)36 demonstrated in

MPEG-7.35 In the SCD implementation, the HSV color space is uniformly quantized

into a total of 256 bins de¯ned by 16 levels in H (Hue), four levels in S (Saturation)

and four levels in V (Value). The values of H, S and V are calculated for every pixel

and are then linearly quantized in the ranges ½0; 15�, ½0; 3� and ½0; 3� respectively.
Afterwards, the modi¯ed histogram is formed using the function:

HQuantized þ 16� SQuantized þ 64� VQuantized ð1Þ
Konstantinidis et al.27 proposed the extraction of a fuzzy-linking histogram based on

the color space CIE-L*a*b*. Their three-input fuzzy system uses the L*, a* and b*

values from each pixel in an image to classify that pixel into one of ten preset colors,

transforming the image into a palette of the ten preset colors.
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In this method, the defuzzy¯cation algorithm classi¯es the input pixel into one

and only one output bin (color) of the system (crisp classi¯cation). Additionally, the

required conversion of an image from the RGB color space to CIEXYZ and ¯nally to

CIE-L*a*b* color space makes the method noticeably time-consuming.

This paper proposes a new two-stage fuzzy-linking system using the HSV color

space, which demands smaller computational power than CIELAB because HSV

converts directly from the RGB color space. The ¯rst stage of the proposed fuzzy

system produces a fuzzy-linking histogram that uses the three HSV channels as

inputs and forms a ten-bin histogram as output. Each bin represents a preset color:

(0) White, (1) Gray, (2) Black, (3) Red, (4) Orange, (5) Yellow, (6) Green, (7) Cyan,

(8) Blue, and (9) Magenta.

The shaping of the input membership value limits is based on the position of

the vertical edges of specially constructed arti¯cial images representing channels

H (Hue), S (Saturation) and V (Value). Figure 1(a.iii) illustrates the vertical edges of

the image that represents the channel H, which were used for determining the

position of membership values of Fig. 2(a). The selected hue regions are stressed by

dotted lines in Fig. 1(a.iv). The membership value limits of S and V are identi¯ed by

the same process.

Coordinate logic ¯lters (CLF)34 are found to be the most appropriate among edge

detection techniques for determining the ¯ne di®erences and extracting these vertical

edges in the specially constructed arti¯cial images representing channels H, S and V.

In our procedure, every pixel of the images that represent the channels H, S and V is

replaced by the result of the coordinate logic ¯lter \AND" operation on its 3� 3

neighborhood. The values of Red, Green and Blue of the nine pixels of every

neighborhood are expressed in binary form. The nine binary values of every channel

from R, G and B are combined with the use of the logical operator \AND". The

result is a binary number for each of the three channels R, G and B. Converting these

numbers to byte form produces the value that the neighborhood's central pixel will

have. This process is repeated for all the pixels and in the three specially constructed

arti¯cial images. The result of this action stresses the edges of the image (Fig. 1(a.ii)).

The di®erence between the initial and the ¯ltered images indicates the total edges.

The position of these edges is the boundaries (Limits) of the system's Membership

values.

(a) (b)

Fig. 1. Edges extraction with CLF-AND ¯lter.
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Based on these edges, the inputs of the system are analyzed as follows: channel H

is divided into eight fuzzy areas. Their borders are shown in Fig. 2(a) and are de¯ned

as: (0) Red to Orange, (1) Orange, (2) Yellow, (3) Green, (4) Cyan, (5) Blue, (6)

Magenta and (7) Magenta to Red.

Channel S is divided into two fuzzy areas. The ¯rst area, in combination with the

fuzzy area activated in channel V, determines whether the input color is clear enough

to be ranked in one of the H histogram colors, or if it is simply a shade of white or

gray.

The third input, channel V, is divided into three areas. The ¯rst area de¯nes

whether the input will be black, independently from the other input values. The

second fuzzy area combined with the value of channel S de¯nes gray.

A set of 20 TSK-like rules54 with fuzzy antecedents and crisp consequents is used.

These rules are given in Appendix A. The consequent section contains variables that

count the number of original pixels mapped to each speci¯c bin of the ten-bin

histogram. Four of the rules depend on two only inputs (S and V) and are decided

independently of the H value.

For evaluating the consequent variables, two algorithms were compared. First, an

LOM (Largest of Maximum) algorithm was used. This method assigns the input to

the output bin of the rule with the greatest activation value. Second, a Multi-Par-

ticipant algorithm was used. This method assigns the input to the output bins which

are de¯ned by all the rules that are being activated with a participation rate to each

bin proportional to the activation rate of the rule that is activated. Experimental

results reveal that the second algorithm performs better.2�4

(a)

(b) (c)

Fig. 2. Membership functions of (a) Hue, (b) Saturation and (c) Value.
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In the second stage of the fuzzy-linking system, a fuzzy system categorizes each

color into one of three hues, producing a 24-bin histogram as output. Each bin

represents a preset color as follows: (0) White, (1) Gray, (2) Black, (3) Light Red, (4)

Red, (5) Dark Red, (6) Light Orange, (7) Orange, (8) Dark Orange, (9) Light Yellow,

(10) Yellow, (11) Dark Yellow, (12) Light Green, (13) Green, (14) Dark Green, (15)

Light Cyan, (16) Cyan, (17) Dark Cyan, (18) Light Blue, (19) Blue, (20) Dark Blue,

(21) Light Magenta, (22) Magenta, (23) Dark Magenta.

The system developed to assign these shades is based on the determinations of the

subtle vertical edges appearing in images with smooth single-color transition from

absolute white to absolute black. The use of a coordinate logic ¯lter (CLF) \AND"34

is also found to be appropriate for determining these vertical edges [Fig. 1(a.iv)].

The values of S and V from each pixel as well as the position number of the bin

(or bins) resulting from the previous fuzzy ten-bin stage are the inputs to this 24-bin

Fuzzy Linking system. If the previous fuzzy ten-bin stage outputs bin position

number three or lower, which de¯nes that pixel as grayscale, the fuzzy system

classi¯es the pixel directly into the corresponding output bin without using the fuzzy

rules. If the position number of the bin from the previous fuzzy ten-bin stage is

greater than three, the system classi¯es the input pixel as belonging to one or more of

the three hue areas produced by the vertical edge extraction procedure described

above. These hues are labeled as follows: Light Color, Color and Dark Color (where

Color is the color attribute produced by the ¯rst ten-bin stage).

The fuzzy 24-bin linking system inputs are analyzed by dividing channels S and V

into two fuzzy regions as depicted in Figs. 3(a) and 3(b) respectively. A set of four

TSK-like rules54 with fuzzy antecedents and crisp consequents are used. These rules

are de¯ned in Appendix A. For the evaluation of the consequent variables, the Multi-

Participant method is also employed.

3. Texture Information Extraction

Texture is one of the most important attributes used in image analysis and pattern

recognition. It provides surface characteristics for the analysis of many types of

images including natural scenes, remotely sensed data and biomedical modalities.20

The present paper focuses on two new methods of texture information extraction

(a) (b)

Fig. 3. Membership functions for (a) saturation and (b) value for the expansion at 24-bin.
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based on fuzzy techniques. The ¯rst method creates an eight-bin histogram using the

high-frequency bands produced by the Haar Wavelet transform. The second method

creates a six-bin histogram using the ¯ve digital ¯lters that were proposed in the

MPEG-7 Edge Histogram Descriptor. In both methods each bin corresponds to a

texture form.

3.1. Extraction of texture information using high frequency

bands of wavelet transforms

To export texture information from the images, three features that represent energy

in high frequency bands of wavelet transforms are used. These elements are the

square root of the second order moment of wavelet coe±cients in high frequency

bands.7 To obtain these features, the Haar transform is applied to the Y (Luminosity

in the YIQ color space) component of an Image Block. The choice of Image Block size

depends on the image dimensions and is discussed in Sec. 4. Suppose, for instance,

that the block size is 4� 4. After a one-level wavelet transform, each block is

decomposed into four frequency bands. Each band contains 2� 2 coe±cients. The

coe±cients in the HL band are fCkl;Ck;lþ1;Ckþ1;l;Ckþ1;lþ1g. One feature is then

computed as:

f ¼ 1

4

X1
i¼0

X1
j¼0

C 2
kþi;lþj

 ! 1
2

ð2Þ

The other two features are computed similarly from the LH and HH bands. The

motivation for using these features is their relation to texture properties. Moments of

wavelet coe±cients in various frequency bands are proven e®ective for discerning

texture.48,49 For example, a large coe±cient value on the HL band shows high ac-

tivity in the horizontal direction. Thus, an image with vertical stripes has high

energy in the HL band and low energy in the LH band. Research shows that this

texture feature is a good compromise between computational complexity and e®ec-

tiveness.49 Elements fLH, fHL and fHH from each image block are normalized and

applied as inputs to a three-input fuzzy system that creates an eight-bin (areas)

histogram as output. This method classi¯es the input image block into one or more

output bins with the following preset texture form labels: TextuHisto(0) Low Energy

Linear area, TextuHisto(1) Low Energy Horizontal activation, TextuHisto(2) Low

Energy Vertical activation, TextuHisto(3) Low Energy Horizontal and Vertical ac-

tivation, TextuHisto(4) High Energy Linear area, TextuHisto(5) High Energy

Horizontal activation, TextuHisto(6) High Energy Vertical activation, TextuHisto

(7) High Energy Horizontal and Vertical activation.

To shape the domain limits of membership values of the three fuzzy-system inputs

over eight texture areas, a simple genetic algorithm is used. A database of 100 images

cropped from a set of 80 texture types selected from the Brodatz Album1 is used.
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For these images the corresponding ideal texture histograms were manually formed.

The simple genetic algorithm then determines o®line the limits of membership values

with an AFT (Auto Fuzzy Tuning) method. Every fuzzy input is separated into two

parts with trapezoidal membership functions, as illustrated in Fig. 4. Also, it is

assumed that, due to the structure of the information carried by the inputs fHL and

fLH, these two can share the same membership value limits. This assumption

facilitates the algorithm's implementation. The chromosomes used by the genetic

algorithm include four values, allocated in two pairs. The ¯rst pair includes the zero

points (points A,B of Fig. 4(a)) of the two membership values fHL and fLH while the

second pair contains the two zero points (points A,B of Fig. 4(b)) of fHH.

The algorithm begins with a sample of 50 chromosomes. The chromosomes are in

an integer and of nonbinary form. An additional control parameter assures that the

second number of each pair is always greater than the ¯rst and that the number

values cannot exceed the limit of their range. The zero point values from all the

chromosomes are used by the fuzzy system to determine the texture type for each of

the 100 images from the database.

For each image the texture histogram produced by the fuzzy system is compared

with the corresponding ideal texture histogram using the Euclidean distance. The

¯tness function is chosen to be the sum of these Euclidean distances. The chromo-

somes are then sorted and the best ten are kept for the formation of the next gen-

eration. A crossover procedure is applied to the next ten best chromosomes with the

algorithm using the point that separates the two pairs as the crossover point. The

next best ¯ve chromosomes are mutated by increasing or decreasing only one con-

tributor value of the chromosome. Finally, 25 additional chromosomes are randomly

inserted. In all cases, the new chromosomes are not allowed to violate the control

parameter restrictions. The procedure is repeated until the ¯tness function is mini-

mized and there is no further improvement. Figure 4(a) shows the fHL and fLH inputs

while the fHH input is shown in Fig. 4(b).

A set of eight TSK-like rules54 with fuzzy antecedents and crisp consequents are

used. These rules are de¯ned in Appendix A. For the evaluation of the consequent

variables, the Multi-Participant method is also employed.

(a) (b)

Fig. 4. Membership functions for (a) fLH and fHL, (b) fHH.
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3.2. Extraction of texture information using the ¯ve digital

¯lters proposed by the MPEG-7 EHD

The ¯ve digital ¯lters proposed by the MPEG-7 Edge Histogram Descriptor (EHD),

are shown in Fig. 5(a).6 These ¯lters are used for the extraction of texture infor-

mation. They are able to characterize the edges present in the applied region as one

of the following texture types: vertical, horizontal, 45-degree diagonal, 135-degree

diagonal and nondirectional edges. In this section a novel approach is proposed that

uses these ¯lters and permits the applied region to participate in more than one

texture type.

The proposed texture feature extraction begins by dividing the image into a

speci¯ed number of Image Blocks. Each Image Block contains four Sub Blocks. The

average gray level of each Sub Block at ði; jÞth Image Block is de¯ned as a0ði; jÞ,
a1ði; jÞ, a2ði; jÞ, and a3ði; jÞ. The ¯lter coe±cients for vertical, horizontal, 45-degree

diagonal, 135-degree diagonal, and nondirectional edges are labeled as fvðkÞ, fhðkÞ,
fd�45ðkÞ, fd�135ðkÞ, and fndðkÞ, respectively, where k ¼ 0; . . . ; 3 represents the

location of the Sub Block. The respective edge magnitudes mvði; jÞ, mhði; jÞ,
md � 45ði; jÞ, md�135ði; jÞ, and mndði; jÞ for the ði; jÞth Image Block can be obtained

as follows:

mvði; jÞ ¼
X3
k¼0

akði; jÞ � fvðkÞ
�����

����� ð3Þ

mhði; jÞ ¼
X3
k¼0

akði; jÞ � fhðkÞ
�����

����� ð4Þ

mndði; jÞ ¼
X3
k¼0

akði; jÞ � fndðkÞ
�����

����� ð5Þ

(a) (b)

Fig. 5. (a) Filter coe±cients for edge detection, (b) edge type diagram.
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md�45ði; jÞ ¼
X3
k¼0

akði; jÞ � fd�45ðkÞ
�����

����� ð6Þ

md�135ði; jÞ ¼
X3
k¼0

akði; jÞ � fd�135ðkÞ
�����

����� ð7Þ

then the max is calculated:

max ¼ MAXðmv;mh;mnd;md�45;md�135Þ ð8Þ
and all ms normalized

m 0
v ¼

mv

max
; m 0

d ¼
md

max
; m 0

nd ¼
mnd

max
; m 0

d�45 ¼
md�45

max
; m 0

d�135 ¼
md�135

max

ð9Þ
The output of the unit that extracts texture information from each Image Block is a

six-bin (area) histogram. Each bin corresponds to a preset region as follows: Edge-

Histo(0) Non Edge, EdgeHisto(1) Non Directional Edge, EdgeHisto(2) Horizontal

Edge, EdgeHisto(3) Vertical Edge, EdgeHisto(4) 45-Degree Diagonal and Edge-

Histo(5) 135-Degree Diagonal. The system classi¯es each Image Block in a two-step

process: ¯rst, the system calculates the max value. The max value must be greater

than the de¯ned threshold for the Image Block to be classi¯ed as a Texture Block,

otherwise it is classi¯ed as a Non Texture Block (Linear). Then, if the Image Block is

classi¯ed as a Texture Block, each m value is placed on the pentagonal diagram of

Fig. 5(b) along the line corresponding to digital ¯lter from which it was calculated.

The diagram's center corresponds to value 1 and the outer edge corresponds to value

0. If any m value is greater than the threshold on the line where it participates, the

Image Block is classi¯ed into the particular type of edge. Thus an Image Block can

participate in more than one edge type. The following source code describes the

process:
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For the calculation of the thresholds, the genetic algorithm described in Sec. 3.1 is

used again. In this case, the chromosome length is only three values that correspond

to Tedge, T0 and T1. For convenience, the implementation assumes that T1 ¼ T2. To

avoid decimal numbers, the values of T0 and T1 are transformed into space ½0; 100�,
thereby avoiding modi¯cations to the mutation method. The extra control par-

ameter used by the fuzzy system in Sec. 3.1 is replaced by a new parameter that

limits the threshold values to their allowable boundaries. Furthermore, the crossover

point is determined to allow a crossover procedure between T0 and T1. The threshold

values are set as: TEdge ¼ 14, T0 ¼ 0:68, T1 ¼ T2 ¼ 0:98.

4. Descriptor Implementation

The color and texture features described in the previous sections are combined to

produce four descriptors. In order to form the proposed descriptors, the image is

initially separated into 1600 Image Blocks. This number is chosen as a compromise

between the image detail and the computational demand. Considering that the

minimum size of each Image Blockmust be 2� 2 pixels (a restriction that comes from

the Texture units), the proposed descriptors are used for images larger than 80� 80

pixels.

The proposed descriptors are constructed as follows: the unit associated with color

information extraction in every descriptor is called the Color Unit. Similarly, the

Texture Unit is the unit associated with texture information extraction. The descrip-

tors' structure has n regions determined by the Texture Unit. Each Texture Unit

region containsm individual regions de¯ned by theColor Unit. Overall, each proposed

descriptor contains m� n bins. On the completion of the process, each descriptor's

histogram is normalized within the interval ½0; 1� and then quantized into three bits/

bins. The quantization process and the quantization tables are described in Sec. 5.

4.1. CEDD — Color and edge directivity descriptor

The CEDD includes texture information produced by the six-bin histogram of the

fuzzy system that uses the ¯ve digital ¯lters proposed by the MPEG-7 EHD.

Additionally, for color information the CEDD uses the 24-bin color histogram

produced by the 24-bin fuzzy-linking system. Overall, the ¯nal histogram has

6� 24 ¼ 144 regions.

Each Image Block interacts successively with all the fuzzy systems. De¯ning the

bin produced by the texture information fuzzy system as n and the bin produced by

the 24-bin fuzzy-linking system as m, then each Image Block is placed in the bin

position: n� 24þm.

The process of generating the descriptor is described in the °owchart Fig. 6(a). In

the Texture Unit, the Image Block is separated into four regions called Sub Blocks.

The value of each Sub Block is the mean value of the luminosity of the pixels it

contains. The luminosity values are derived from a YIQ color space transformation.
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Each Image Block interacts with the ¯ve digital ¯lters proposed by MPEG-7 EHD,

and with the use of the pentagonal [Fig.5(b)] diagram it is classi¯ed in one or more

texture categories. For illustration purposes let us assume that the Texture Unit

classi¯es a given Image Block into the second bin which is de¯ned as NDE (Non

Directional Edge). Then, in the Color Unit, every Image Block is converted to the

HSV color space. The mean values of H, S and V are calculated and become inputs to

the fuzzy system that produces the fuzzy ten-bin histogram. Let us again assume that

the classi¯cation resulted in the fourth bin which indicates that the color is red.

Then, the second fuzzy system (24-bin Fuzzy Linking System), using the mean

values of S and V as well as the position number of the bin (or bins) resulting from

the previous fuzzy ten-bin unit, calculates the hue of the color and produces the fuzzy

24-bin histogram. And let us assume that the Color Unit system classi¯es this block

in the fourth bin which indicates the color as (3) Light Red. The combination of the

three fuzzy systems will ¯nally classify the Image Block in the 27th bin ð1� 24þ 3Þ.
The process is repeated for all the image blocks. At the completion of the process, the

histogram is normalized within the interval ½0; 1� and quantized according to the

process described in Sec. 5. Figure 6(b) illustrates the CEDD structure.

4.2. C.CEDD — Compact color and edge directivity descriptor

The method for producing the C.CEDD di®ers from the CEDD method only in the

color unit. The C.CEDD uses the fuzzy ten-bin linking system instead of the fuzzy

24-bin linking system. Overall, the ¯nal histogram has only 6� 10 ¼ 60 regions. It is

the smallest descriptor of the proposed set. The °owchart in Fig. 7(a) describes the

generation of the C.CEDD while Fig. 7(b) shows its structure.

(a) (b)

Fig. 7. C.CEDD (a) Implementation °owchart, (b) structure.

(a) (b)

Fig. 6. CEDD (a) Implementation °owchart, (b) structure.
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4.3. FCTH — Fuzzy color and texture histogram

The FCTH descriptor includes the texture information produced in the eight-bin

histogram of the fuzzy system that uses the high frequency bands of the Haar wavelet

transform. For color information, the descriptor uses the 24-bin color histogram

produced by the 24-bin fuzzy-linking system. Overall, the ¯nal histogram includes

8� 24 ¼ 192 regions.

Each Image Block interacts successively with all the fuzzy systems in the exact

manner demonstrated in CEDD production. The FCTH descriptor generation is

described in Fig. 8(a) °owchart.

Each Image Block is transformed into the YIQ color space and transformed with

the Haar Wavelet transform. The fLH, fHL and fHH values are calculated and with

the use of the fuzzy system that classi¯es the f coe±cients, this Image Block is

classi¯ed in one of the eight output bins. Suppose, for example, that the classi¯cation

assigns this block to the second bin de¯ned as Low Energy Horizontal activation.

Next, the same Image Block is transformed into the HSV color space and the mean H,

S and V block values are calculated. These values become inputs to the fuzzy system

that forms the ten-bin fuzzy color histogram. Let us assume that this system classi¯es

a given block into the fourth bin de¯ned as color (3) Red. Then, the next fuzzy

system uses the mean values of S and V as well as the position number of the bin

(or bins) resulting from the previous fuzzy ten-bin unit, to calculate the hue of the

color and create the fuzzy 24-bin histogram. Let us assume that the system classi¯es

this Image Block in the fourth bin which de¯nes that color as (3) Light Red. The

combined three fuzzy systems therefore classify the Image Block into the 27th bin

ð1� 24þ 3Þ. The process is repeated for all the blocks of the image. At the

completion of the process, the histogram is normalized within the interval ½0; 1� and
quantized according to the procedures described in Sec. 5. Figure 8(b) illustrates the

FCTH descriptor structure.

4.4. C.FCTH — Compact fuzzy color and texture histogram

The method for producing C.FCTH di®ers from the FCTH method only in the color

unit. Like its C.CEDD counterpart, this descriptor uses only the fuzzy ten-bin

linking system instead of the fuzzy 24-bin linking system. Overall, the ¯nal histogram

(a) (b)

Fig. 8. FCTH (a) Implementation °owchart, (b) structure.
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includes only 8� 10 ¼ 80 regions. The °owchart in Fig. 9(a) describes the procedure

for generating the C.FCTH descriptor while Fig. 9(b) shows the C.FCTH structure.

5. Descriptor Quantization

To restrict the proposed descriptors' length, the normalized bin values of the

descriptors are quantized for binary representation in a three bits/bin quantization.

For example, the 144-bin CEDD is limited to 144� 3 ¼ 432 bits. Because most of the

values are concentrated within a small range (from 0 to 0.25), they are nonlinearly

quantized. Also, the descriptor bins are divided into separate quantization groups

with di®ering quantization values.

In order to calculate the CEDD quantization table, a sample of 10,000 images is

used. First, CEDD vectors are calculated for all images. The combined 10;000� 144

elements constitute inputs into the fuzzy Gustafson Kessel classi¯er,18 which

separates the volume of the samples into eight regions, mapping the bin values from

the decimal area ½0; 1� into the integer area ½0; 7�. The Gustafson Kessel parameters

are selected as: clusters = 8, repetitions = 2000, e ¼ 0:002, and m ¼ 2. The resulting

quantization is given in Table 1. The values of the histogram appearing in bins 0�23

are assigned to one of the values ½0; 7� according to the minimum distance of each bin

value from one of the eight entries in the ¯rst row of the table. The same procedure is

(a) (b)

Fig. 9. C.FCTH (a) Implementation °owchart, (b) structure.

Table 1. CEDD quantization table.

CEDD Bin: 0�23/C.CEDD Bin: 0�9

000 001 010 011 100 101 110 111
0.00018 0.0237 0.0614 0.1139 0.1791 0.2609 0.3417 0.5547

CEDD Bin: 24�47/C.CEDD Bin: 10�19

000 001 010 011 100 101 110 111
0.00020 0.0224 0.0602 0.1207 0.1811 0.2341 0.3256 0.5207

CEDD Bin: 48�95/C.CEDD Bin: 20�39

000 001 010 011 100 101 110 111
0.00040 0.0048 0.0108 0.0181 0.0270 0.0381 0.0526 0.0795

CEDD Bin: 96�143/C.CEDD Bin: 40�59

000 001 010 011 100 101 110 111
0.00096 0.0107 0.0241 0.0415 0.0628 0.0930 0.1369 0.2628
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followed for the entries in bins 24�47, 48�95 and 96�143 using the quantization

values shown in each of their corresponding rows in the table.

The quantization table for FCTH descriptor is calculated in a similar manner,

limiting its total length to 192� 3 ¼ 576 bits. The resulting quantization is pre-

sented in Table 2. The values of the histogram appearing in bins 0�47 are assigned to

one of the values ½0; 7� according to the minimum distance of each bin value from one

of the eight entries in the ¯rst row of the table. The same procedure is followed for the

entries in bins 48�143 and 144�191 using the quantization values shown in each of

their corresponding rows.

For convenience, in the implementation of systems that use the proposed

descriptors, the quantization tables of the compact versions of the descriptors are the

same as the quantization tables of the noncompact versions. The C.CEDD quanti-

zation table is the same as the CEDD quantization table. Likewise, the C.FCTH

quantization table is the same as the FCTH quantization table. The CEDD length is

54 bytes per image, FCTH length is 72 bytes per image, C.CEDD requires less than

23 bytes per image and C.FCTH uses 30 bytes per image.

6. Experiments

Recently, standard benchmark databases and evaluation campaigns have been

created allowing a quantitative comparison of CBIR systems. These benchmarks

allow the comparison of image retrieval systems under di®erent aspects: usability

and user interfaces, combination with text retrieval, or overall performance of a

system.9 The proposed descriptors are integrated into the retrieval software system

img(Rummager)5 and the online application img(Anaktisi)52 where they can be

quantitatively evaluated.

Img(Rummager) is developed by the authors of this paper in the Automatic

Control Systems & Robotics Laboratorya at the Democritus University of Thrace-

Greece. This system is implemented in C# and operates on an Intel Pentium

3.4 MHz PC (2 GB RAM memory). Img(Rummager) software can connect to a

Table 2. FCTH quantization table.

FCTH Bin: 0�47/C.FCTH Bin: 0�19

000 001 010 011 100 101 110 111
0.00013 0.0093 0.0224 0.0431 0.0831 0.1014 0.1748 0.224

FCTH Bin: 48�143/C.FCTH Bin: 20�59

000 001 010 011 100 101 110 111
0.00023 0.0173 0.0391 0.0693 0.0791 0.0910 0.1618 0.185

FCTH Bin: 144�191/C.FCTH Bin: 60�79

000 001 010 011 100 101 110 111
0.00018 0.0273 0.0414 0.0539 0.0691 0.0820 0.0918 0.128

aACSL: http://www.ee.duth.gr/acsl
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database and execute a retrieval procedure, extracting the comparison features in

real time. The image database can be stored either on the computer where the

retrieval takes place or on a local network. Moreover, this software is capable of

executing retrieval procedures among the keyword-based (Tags) results that the

Flicker provides. Img(Anaktisi) was also developed by the authors of this paper at

the Image Processing and Multimedia Laboratoryb at the Democritus University of

Thrace-Greece. This web programc is programmed in C# with the help of Visual

Studio 2008 and is based on the Microsoft .NET Framework 3.5. It also employs

AJAX, HTML and Javascript technologies for user interaction. Finally, Microsoft

SQL Server 2005 is the database used by the web platform to store and retrieve the

descriptors for each image.

To evaluate the performance of the descriptors, experiments are performed on ¯ve

image databases: WANG's database,31,49 MPEG-7 CCD database, UCID43 data-

base, img(Rummager) database and Nister database.38 All the results are available

online.d Figure 12 illustrates the ANMRR values for the ¯ve benchmarking image

databases.

6.1. Similarity measure

For similarity matching, the distance Dði; jÞ of two image descriptors xi and xj is

calculated using the nonbinary Tanimoto coe±cient.

Dði; jÞ ¼ Tij ¼ tðxi;xjÞ ¼
xT
i xj

xT
i xi þ xT

j xj � xT
i xj

ð10Þ

where xT is the transpose vector of the descriptor x.

In the absolute congruence of the vectors, the Tanimoto coe±cient takes the

value 1, while in the maximum deviation the coe±cient tends to 0. The Tanimoto

Coe±cient was found to be preferable than the similarity L1, L2 (Euclidean

Distance), Jensen-Shannon40 and Bhattacharyya because it presented better results.

In Sec. 6.6, which describes the experiments carried out on the img(Rummager)

database, the ANMRR values for all the di®erent similarity metrics used are outlined

in detail.

6.2. Performance evaluation

The objective Averaged Normalized Modi¯ed Retrieval Rank (ANMRR)35 is

employed to evaluate the performance of the image retrieval system that uses the

proposed descriptors in the retrieval procedure.

bIPML: http://ipml.ee.duth.gr

chttp://www.anaktisi.net

dhttp://orpheus.ee.duth.gr/anaktisi/results
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The average rank AVR(q) for query q is:

AVRðqÞ ¼
XNGðqÞ

k¼1

RankðkÞ
NGðqÞ ð11Þ

where

. NGðqÞ is the number of ground truth images for query q. A ground truth is de¯ned

as a set of visually similar images.

. K ¼ minðXNG �NGðqÞ; 2�GTMÞ.

. GTM ¼ maxðNGÞ.

. If NGðqÞ > 50 then XNG ¼ 2 else XNG ¼ 4.

. RankðkÞ is the retrieval rank of the ground truth image.

Consider a query. Assume that as a result of the retrieval, the kth ground truth

image for this query q is found at a position R. If this image is in the ¯rst K

retrievals then RankðkÞ ¼ R else RankðkÞ ¼ ðK þ 1Þ.
The modi¯ed retrieval rank is:

MRRðqÞ ¼ AVRðqÞ � 0:5� ½1þ NGðqÞ� ð12Þ
Note that MRR is 0 in case of perfect retrieval. The normalized modi¯ed retrieval

rank is computed as follows:

NMRRðqÞ ¼ MRRðqÞ
1:25�K � 0:5� ½1þ NGðqÞ� ð13Þ

Finally the average of NMRR over all queries is de¯ned as:

ANMRR ¼ 1

Q

XQ
q¼1

NMRRðqÞ ð14Þ

where

. Q is the total number of queries.

The ANMRR is always in the range of 0 to 1 and the smaller the value of this

measure, the better the matching quality of the query. ANMRR is the evaluation

criterion used in all of the MPEG-7 color core experiments. Evidence shows that the

ANMRR measure approximately coincides linearly with the results of subjective

evaluation of search engine retrieval accuracy.35

6.3. Experiments on the WANG database

The WANG database31,49 is a subset of 1000 manually-selected images from the

Corel stock photo database and forms ten classes of 100 images each. This image

database is available online.e In particular, queries and ground truths proposed by

ehttp://wang.ist.psu.edu/docs/home.shtml
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the MIRROR51 image retrieval system are used. MIRROR separates the WANG

database into 20 queries. A sample query is illustrated in Fig. 10(a).

The proposed descriptors are used in the retrieval procedure and the results are

compared with the corresponding results of the following MPEG-735,23,24 descriptors:

Color Descriptors: Dominant Color Descriptor (DCD eight colors), Scalable Color

Descriptor (SCD-32 colors), Color Layout Descriptor (CLD), Color Structure

Descriptor (CSD-32 colors).

(a) (b)

(c) (d)

(e)

Fig. 10. Query examples in (a) WANG's database, (b) MPEG-7 CCD database, (c) UCID database and,

(d) img(Rummager) database and (e) Nister database. The ¯rst image on the top left of each group is also

the query image.
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Texture Descriptors: Edge Histogram Descriptor (EHD), Homogeneous Texture

Descriptor (HTD).

The NMRR values for the MPEG-7 descriptors in WANG's database are avail-

able at Ref. 51. Table 3 shows indicative examples of query results and the ANMRR

scores for all 20 queries. The results of the proposed descriptors are also compared

with the results of the RGB Color Histogram, Tamura Directionality Histogram46

and Auto Color Correlograms.19

Color histograms are among the most basic approaches and are widely used in

image retrieval. The color space is partitioned and for each partition the pixels with a

color within its range are counted, resulting in a representation of the relative fre-

quencies of the occurring colors.9 We use the RGB color space for the histograms.

The distance between the images was measured using L2.

The Tamura Directionality histogram is a graph of local edge probabilities

against their directional angle. For the purpose of these experiments, the 16-bin

Tamura Directionality Histogram was used, and the distance was calculated

using L2.

Color Correlograms distill the spatial correlation of colors, and are both e®ective

and inexpensive for content-based image retrieval. The correlogram robustly toler-

ates large changes in appearance and shape caused by changes in viewing positions,

camera zooms, etc.19 For the purpose of these experiments, the approach suggested

in Ref. 19 with maxdistance ¼ 16 was used.

As the results in Table 3 show, on the WANG database the proposed descriptors

achieve better retrieval scores than the other descriptors.

Table 3. Results from the WANG image database.

Descriptor Query ANMRR

204 327 522 600 703

MPEG-7 Descriptors

DCD MPHSM-8 Colors 0.543 0.407 0.556 0.215 0.306 0.39460

DCD QHDM-8 Colors 0.420 0.469 0.537 0.610 0.781 0.54680
SCD-32 Colors 0.442 0.406 0.508 0.083 0.211 0.35520

CLD 0.616 0.542 0.454 0.454 0.252 0.40000

CSD-32 Colors 0.323 0.348 0.526 0.066 0.146 0.32460

EHD 0.782 0.317 0.690 0.277 0.307 0.50890
HTD 0.887 0.594 0.734 0.445 0.615 0.70540

Other Descriptors

RGB color histogram 0.618 0.899 0.715 0.569 0.820 0.59134
Tamura directionality 0.889 0.682 0.806 0.690 0.574 0.63622

Correlograms 0.493 0.458 0.674 0.334 0.664 0.50107

Proposed Descriptors
CEDD 0.314 0.127 0.347 0.059 0.115 0.25283

FCTH 0.235 0.114 0.323 0.026 0.092 0.27369

C.CEDD 0.316 0.140 0.452 0.069 0.088 0.30637

C.FCTH 0.320 0.224 0.493 0.013 0.116 0.31537
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In order to be able to compare the results of the proposed descriptors with even

more descriptors in the bibliography, the following experiment was carried out. For

each image in the Wand database, a search was carried out over the total of 1000 and

the AP (Average Precision) was calculated, assuming the Ground Truth to be the

remaining 99 images belonging to the same group as the query image. Then the mean

of all these average precisions (MAP) was taken. The results are presented in

Table 4. The values of the remaining descriptors are taken from Ref. 9. The bigger

the MAP, the better the descriptor is. As the results show, the CEDD presents the

best results out of all the descriptors.

The deviation that appears between the MAP and the ANMRR is due to the

di®erence between experiments. In the ¯rst experiment, only 20 queries were used,

with an average ground truth of about 30 images, whereas in the second, 1000 queries

(all the images) were used, with 99 images for each ground truth.

6.4. Experiments on the MPEG-7 CCD database

The Common Color Dataset (MPEG-7 CCD ) contains approximately 5000 images

and of a set of 50 common color queries (CCQ). Each query is speci¯ed with a set of

ground truth images. This is the image database where the MPEG-7 descriptors have

been tested. CCD contains images that originated from consecutive frames of tele-

vision shows, newscasts and sport shows. It also includes a large number of photo-

maps. MPEG-7 CCD is a database that is clearly designed to be tested with color

descriptors, frequently causing texture descriptors to present very low retrieval

scores. A query sample is illustrated in Fig. 10(b). The NMRR values for the

MPEG-7 descriptors in MPEG-7 CCD database are also available in Ref. 51. Table 5

shows certain indicative query results and the ANMRR values for all 50 queries.

On the MPEG-7 CCD database, the proposed descriptors appear to present the

second best scores. The Color Structure Descriptor achieved the best score. The

reason that the proposed descriptors failed to satisfactorily retrieve entire ground

Table 4. Mean average precision [%] for each of the features in the WANG image database.

Descriptor MAP Descriptor MAP

CEDD 50.6 32� 32 image 37.6

FCTH 50.1 MPEG7: color layout 41.8
C.CEDD 49.3 X� 32 image 24.3

C.FCTH 47.6 Tamura texture histogram 38.2

Color histogram 50.5 LF SIFT signature 36.7

LF SIFT global search 38.3 Gray value histogram 31.7
LF patches histogram 48.3 LF patches global 30.5

LF SIFT histogram 48.2 MPEG7: edge histogram 40.8

Inv. feature histogram (monomial) 47.6 Inv. feature histogram (relational) 34.9

MPEG7: scalable color 46.7 Gabor vector 23.7
LF patches signature 40.4 Global texture feature 26.3

Gabor histogram 41.3
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truths for some queries is due to the fact that the MPEG-7 CCD ground truths

include images that are directed toward descriptors that mostly control color simi-

larity. The very low scores presented by the MPEG-7 texture descriptors and the

Tamura Directionality descriptor con¯rm this assertion. Another reason for less than

perfect recall is the fact that many queries include rotated images in their ground

truth. Due to their texture attribute, the proposed descriptors are not suitable for

retrieving these images.

6.5. Experiments on the UCID database

The UCID database was created as a benchmark database for CBIR and image

compression applications.43 This database currently consists of 1338 uncompressed

TIFF images on a variety of topics including natural scenes and man-made objects,

both indoors and outdoors. The UCID database is available to fellow researchers.f All

the UCID images were subjected to manual relevance assessments against 262 selected

images, creating 262 ground truth image sets for performance evaluation. In the

assessment, only very clearly relevant images are considered to be suitable. This

relevance assumption makes the retrieval task easy because the ground truth images

are quite similar. On the other hand, it makes the task di±cult, because there are

images in the database with high visual similarity that are not considered relevant.

Hence, it can be di±cult to have highly precise results with the given relevance

assessment, but because only few images are considered relevant, high recall values

Table 5. Results from the MPEG-7 CCD image database.

Descriptor Query ANMRR

i0121 add5 img00133 add3 img00438 s3

MPEG-7 Descriptors

DCD MPHSM-8 colors 0 0.484 0.008 0.2604

DCD QHDM-8 colors 0.057 0.438 0.400 0.2834
SCD-32 Colors 0 0.152 0 0.1645

CLD 0 0.401 0.308 0.2252

CSD-32 Colors 0 0 0 0.0399

EHD 0 0.406 0.381 0.3217
HTD 0.229 0.401 0.486 0.42498

Other Descriptors

RGB color histogram 0.229 0.401 0.161 0.42729
Tamura directionality 0.314 0.770 0.714 0.65913

Correlograms 0.000 0.290 0.294 0.28749

Proposed Descriptors
CEDD 0 0 0.033 0.08511

FCTH 0 0.037 0.003 0.10343

C.CEDD 0 0.014 0.167 0.12655

C.FCTH 0 0.065 0 0.15977

fhttp://vision.cs.aston.ac.uk/datasets/UCID/ucid.html
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(a)

(b)

Fig. 11. Screenshots from (a) img(Anaktisi) and (b) img(Rummager).

Table 6. Results from the UCID image database.

Descriptor Query ANMRR

ucid00095 ucid00172 ucid00297 ucid00583

MPEG-7 Descriptors

SCD-32 Colors 0.471 0.058 0.471 0.384 0.46665
CLD 0.471 0.471 0.471 0.299 0.43216

EHD 0.471 0.471 0 0.477 0.43314

Other Descriptors
RGB color histogram 0.471 0.471 0.176 0.553 0.52315

Tamura directionality 0.471 0.471 0.471 0.536 0.55682

Correlograms 0.059 0.471 0.294 0.360 0.41386

Proposed Descriptors

CEDD 0 0.471 0 0.147 0.28234

FCTH 0.059 0 0 0.191 0.28737

C.CEDD 0 0.059 0 0.241 0.29331
C.FCTH 0.059 0 0.059 0.236 0.30871
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might be easy to obtain.10 A query sample is presented in Fig. 10(c). In Table 6, certain

indicative results and ANMRR values for all of the 262 queries are demonstrated.

Because the MPEG-7 descriptor results are not available for this database, an

implementation of CLD, SCD and EHD in img(Rummager)g application is used. The

source code is a modi¯cation of the implementation that can be found in the LIRE33

retrieval system. The original version of the descriptors' implementation is written in

Java and is available online as open sourceh under the General Public License (GPL).

The Img(Rummager) application results match the LIRE results. As shown in

Table 6, on the UCID database the proposed descriptors achieve the best retrieval

results.

The experiments were also repeated in this database to calculate the MAP. In this

case, the ground truth used for every query image was that suggested by the data-

base, but without including the query image. The results are presented in Table 7.

The values of the remaining descriptors are taken from Ref. 9.

As can be seen from the results in Table 7, the CEDD presents the second best

result, with the best descriptor being the LF SIFT Global Search,32 which could be

expected, because database consists of very close matches that are suitable for SIFT

features.

The LF SIFT Global Search descriptor is non-compact and is extracted from the

Harris interest points (Local).11 When comparing the results of the proposed

descriptors with the results of the corresponding global compact descriptors, it can be

observed that the proposed descriptors have the better MAP.

In the USID case, the deviation appearing between the ANMRR and the MAP is

due to the fact that, in the latter case (experiments for MAP measurement), the

ground truths did not contain the query image. Given that many ground truths

Table 7. Mean average precision [%] for each of the features for the UCID image database.

Descriptor MAP Descriptor MAP

CEDD 45 32� 32 image 22.3

FCTH 44.7 MPEG7: color layout 14
C.CEDD 42.1 X� 32 image 21.7

C.FCTH 40.4 Tamura texture histogram 13.9

Color histogram 43.3 LF SIFT signature 33.2

LF SIFT global search 62.5 Gray value histogram 34.1
LF patches histogram 37.5 LF patches global 11.8

LF SIFT histogram 44.7 MPEG7: edge histogram 30.3

Inv. feature histogram (monomial) 41.6 Inv. feature histogram (relational) 25.2

MPEG7: scalable color 37.9 Gabor vector 14.4
LF patches signature 27.6 Global texture feature 4.7

Gabor histogram 6.7

gThe prototype is available along with documentation and screenshots at http://www.img-

rummager.com

hhttp://sourceforge.net/project/downloading.php?groupname=caliph-emir&¯lename=Lire-0.5.4.zip&

use mirror=switch
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contain only two�three images, the unsuccessful retrieval of any of these would

greatly in°uence the results.

6.6. Experiments on the img(Rummager) database

The img(Rummager) database is integrated in the retrieval software system img

(Rummager) and includes 22,000 images. The ¯rst 4343 images come from the

Microsoft Research Cambridge image database,i and are used mostly for object

detection.44,50 This database also includes 1000 images from the LabelME image

database,41 2333 images from the Zubudj image database, 1000 Chinese art ima-

ges, 1000 images of famous paintings, 3000 images from television frames, 224 images

from the ICPR 2004 image set, 500 images from the VASCk image database and

¯nally a set of images from personal collections. All the images are high quality,

multi-object, color photographs that have been chosen according to strict image

selection rules.17 The database includes 100 queries, with an average ground truth

size of approximately 15 images. A sample query is illustrated in Fig. 10(d).

In this database, the implementation of CLD, SCD and EHD in img(Rummager)

application is also used. As shown in Table 8, on the img(Rummager) database the

proposed descriptors achieve the best retrieval results.

Img(Rummager) is the database that was used as the core of the experiments for

the shaping of the proposed descriptors. Table 9 shows the ANMRR results for the

ihttp://research.microsoft.com/vision/cambridge/recognition/default.htm

jhttp://www.vision.ee.ethz.ch/datasets/index.en.html

khttp://www.ius.cs.cmu.edu/idb/

Table 8. Results from the img(Rummager) image database.

Descriptor Query ANMRR

286 133 327 400 967 703

MPEG-7 Descriptors

SCD-32 Colors 0.012 0 0.239 0.256 0 0.112 0.29755

CLD 0.124 0.011 0.368 0.256 0 0 0.31325
EHD 0.786 0.211 0.876 0.498 0.1225 0.2214 0.51214

Other Descriptors

RGB color histogram 0.224 0.211 0.239 0.256 0.112 0.000 0.30156
Tamura directionality 0.786 0.321 0.239 0.487 0.112 0.275 0.54211

Correlograms 0.000 0.078 0.352 0.256 0.000 0.012 0.25412

Proposed Descriptors

CEDD 0 0 0 0.110 0 0 0.20443
FCTH 0 0.078 0 0 0 0 0.19239

C.CEDD 0.010 0 0.043 0 0 0.112 0.24332

C.FCTH 0 0.078 0 0.144 0 0.112 0.24356
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CEDD and FCTH descriptors using several similarity metric techniques. As the

results show, Tanimoto Coe±cient presented the best results.

6.7. Experiments on the Nister image database

The Nister image database consists of N groups of four images each.38 All the images

are 640� 480. Each group includes images of a single object. The pictures are taken

from di®erent viewpoints and occasionally under di®erent lighting conditions. The

¯rst image of every object is used as a query image. Given a query image, only images

from the same group are considered relevant.

For the purpose of calculating the e±ciency of the proposed descriptors, the

database is divided into three subsets. The ¯rst subset includes the ¯rst 1000 images

of the database with 250 queries. The second subset consists of the ¯rst 2000 images

with 500 queries where half (250 queries) are from the ¯rst subset. The third subset

includes the entire dataset of 10,200 images with the same 500 queries used in the

second subset. A sample query is illustrated in Fig. 10(e).

The Nister database retrieval di±culty is dependent on the chosen subset.

Important factors are:

(1) Di±culty of the objects themselves. CD-covers are much easier than °owers.

(2) Sharpness of the images. Many of the indoor images are somewhat blurry and

this can a®ect some algorithms.

(3) Similar or identical objects in di®erent groups.

(a) (b)

Fig. 12. ANMRR results for (a) Wang and MPEG-7 databases and (b) UCID, img(Rummager) and

Nister databases.

Table 9. ANMRR results from the img(Rummager) database using several similarity

matching techniques.

Descriptor Tanimoto L1 L2 Jensen-Shannon Bhattacharyya

CEDD 0.20443 0.23554 0.20558 0.26554 0.24224
CEDD un-quantized 0.23665 0.25554 0.24013 0.26558 0.23112

FCTH 0.19239 0.21214 0.01125 0.20221 0.21112

FCTH un-quantized 0.18669 0.23325 0.23855 0.23745 0.21556
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The subsets and the queries are from various di±culty levels. The images used in

every subset as well as the complete results are available online.l

As shown in Table 10, the proposed descriptors yield better results on the Nister

database as well. In fact, the FCTH descriptor approaches perfect recall (ANMRR =

0.09463) on the ¯rst subset. As the number of the images involved in the search

procedure increases, the MPEG-7 descriptor's ANMRR value also increases but the

proposed descriptor's ANMRR is almost stable.

lhttp://orpheus.ee.duth.gr/anaktisi/results

Table 10. Results on Nister image database.

Descriptor Query ANMRR

ukbench00052 ukbench00352 ukbench00900

1000 Images

MPEG-7 Descriptors

SCD-32 Colors 0.157 0.129 0.729 0.36365
CLD 0.471 0.486 0.129 0.22920

EHD 0.229 0.143 0.371 0.30060

Proposed Descriptors
CEDD 0 0 0 0.11297

FCTH 0 0 0 0.09463

C.CEDD 0 0 0 0.11537

C.FCTH 0 0.071 0 0.1152
2000 Images

MPEG-7 Descriptors

SCD-32 Colors 0.171 0.157 0.729 0.40589

CLD 0.471 0.571 0.386 0.3156
EHD 0.243 0.229 0.386 0.4238

Proposed Descriptors

CEDD 0 0 0 0.17766
FCTH 0 0 0 0.13494

C.CEDD 0 0 0 0.19363

C.FCTH 0 0.071 0 0.16677
10200 Images

MPEG-7 Descriptors

SCD-32 Colors 0.271 0.643 0.729 0.48871

CLD 0.471 0.586 0.471 0.37966
EHD 0.243 0.257 0.471 0.49863

Other Descriptors

RGB color histogram 0.229 0.500 0.729 0.54437
Tamura directionality 0.729 0.729 0.729 0.70434

Correlograms 0 0.471 0 0.35711

Proposed Descriptors

CEDD 0 0 0 0.21220
FCTH 0 0 0 0.17111

C.CEDD 0 0 0 0.24509

C.FCTH 0 0.271 0 0.22403
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7. Relevance Feedback Algorithm (RFA)

High retrieval scores in content-based image retrieval systems can be attained by

adopting relevance feedback mechanisms. These mechanisms require the user to

grade the quality of the query results by marking the retrieved images as being either

relevant or not. Then, the search engine uses this grading information in subsequent

queries to better satisfy users' needs. It is noted that while relevance feedback

mechanisms were ¯rst introduced in the information retrieval ¯eld,42 they currently

receive considerable attention in the CBIR ¯eld. The vast majority of relevance

feedback techniques proposed in the literature are based on modifying the values of

the search parameters so that they better represent the concept consistent with the

user's option. Search parameters are computed as a function of the relevance values

assigned by the user to all the images retrieved so far. For instance, relevance

feedback is frequently formulated in terms of the modi¯cation of the query vector

and/or in terms of adaptive similarity metrics. Pattern classi¯cation methods such as

SVMs have been used53 in Relevance Feedback (RF) techniques.

Moreover, the user searching for a subset of images using the above descriptors,

sometimes does not have a clear and accurate vision of these images. He/she has a

general notion of the image in quest but not the exact visual depiction of it. Also,

sometimes there is not an appropriate query image to use for retrieval. The proposed

Automatic Relevance Feedback (ARF) algorithm attempts to overcome these pro-

blems by providing a mechanism to ¯ne tune the retrieval results or to use a group of

query images instead of one. The aforementioned is accomplished by manipulating

the original query descriptor relying on the subsequent queries' images, while

attempting to construct the ideal query descriptor.

7.1. The proposed automatic relevance feedback algorithm

The goal of the proposed Automatic Relevance Feedback (ARF) algorithm is to

optimally readjust or even change the initial retrieval results based on user pre-

ferences. During this procedure, the user selects from the ¯rst round of retrieved

images one or more, as being relevant to his/her initial retrieval expectations.

Information extracted from these selected images, is used to alter the initial query

image descriptor.

Primarily, the initial image query one-dimensional descriptor is transformed to a

three-dimensional ðx; y; zÞ vector Wx;y;z based on the inner features of the descriptor.

The x, x 2 ½1;n� dimension represents the texture where n is equal to the number of

textures that the image descriptor contains. The y, y 2 ½1; k� dimension corresponds

to the dominant colors where k is equal to the number of dominant colors contained

in each texture. The z, z 2 ½1;m� dimension depicts the variation of dominant colors

where m is equal to the maximum variation that each color has. Table 11 depicts the

values of n, k and m for each proposed descriptor and Fig. 13 illustrates the vector.

The advantage of the above transformation is easier access to the inner information

of the descriptor through the x, y and z dimensions. For example, the extraction of
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the bin descriptor of the same variation (z axis) of a dominant color (y axis) for each

di®erent texture (x axis) is accomplished by holding the two dimensions ðy; zÞ
constant, while x dimension takes all its allowable values in the interval ½1;n�. The
transformation of the descriptor to the three-dimensional vector is based on the

following equation:

i ¼ ðk�mÞ � xþm� yþ z ð15Þ

x ¼ i

k�m

� �
ð16Þ

y ¼ i� i
k�m

� �� k�mð Þ
m

� �
ð17Þ

or

y ¼ i� x� k�mð Þ
m

� �
ð18Þ

Table 11. The n, k, m values for each proposed descriptor.

CEDD FCTH C.CEDD C.FCTH

n 6 8 6 8

k 8 8 10 10
m 3 3 1 1

(a) (b)

Fig. 13. (a) The three-dimensional vector Wx;y;z. (b) The alteration of the values of the vector element

Wxt;yt;zt and its associated elements.
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z ¼ i� i

k�m

� �
� k�mð Þ � i� i

k�m

� �� k�mð Þ
m

� �
�m ð19Þ

or

z ¼ i� x� k�mð Þ � y�m ð20Þ
where i is the position of the bin inside the descriptor and x,y,z is the position of the

same bin inside the three-dimensional vectorWx;y;z. Initially, the value of each vector

element is equal to the value of the corresponding descriptor bin. When the user

selects a relevant image from the retrieval results, each bin of that selected image's

descriptor Xi updates the corresponding value of the Wx;y;z vector in a Kohonen Self

Organized Featured Map (KSOFM)25,26 manner so that it moves closer to the new

value emerging from Xi:

Wxt;yt;ztðtþ 1Þ ¼ Wxt;yt;ztðtÞ þ LðtÞ � Xxt;yt;zt �Wxt;yt;ztðtÞ
� � ð21Þ

where Xxt;yt;zt is the transformed three-dimensional vector of the selected image

query descriptor Xi based on Eq. (15).

Each time a user selects another relevant image, an epoch t starts. This epoch

ends after all the elements of vector Xxt;yt;zt of the selected relevant image are used to

update the corresponding values of Wxt;yt;zt according to Eq. (21).

LðtÞ function utilizes the same philosophy as the KSOFM learning rate function

and de¯nes the rate of the vector element readjustment. It is not constant; instead

decreases each time a new query image descriptor is presented:

LðtÞ ¼ Einitial �
EFinal

EInitial

� 	 t
tmax ð22Þ

In the present work: EInitial ¼ 0:4, EFinal ¼ 0:001, t 2 ½0; 30� and tmax ¼ 30.

According to Eq. (22), LðtÞ is a decreasing function, obtaining values in the interval

EInitial to EFinal.

Additionally, each one of the other vector elements Wxq; yq; zq (except the

Wxt;yt;zt) also readjust their values based on the following equation:

Wxq;yq;zqðtþ 1Þ ¼ Wxq;yq;zqðtÞ þ LðtÞ � hðxq; yq; zqÞ � Xi �Wxt;yt;ztðtÞ
� � ð23Þ

The hðxq; yq; zqÞ function utilizes the same philosophy as the KSOFM neighborhood

function and de¯nes the readjustment rate of the associated descriptor bins:

hðxq; yq; zqÞ ¼ k�m

100
where yq ¼ yt; zq ¼ zt ð24Þ

hðxq; yq; zqÞ ¼ k

100� jzt� zqj where xq ¼ xt; yq ¼ yt ð25Þ

hðxq; yq; zqÞ ¼ 0 anything else ð26Þ
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Equations (24)�(26) attempts to correct the descriptor errors (for example the

quantization) as it readjusts the same color of the corresponding element Wxt;yt;zt

found within other texture areas (through x axis), and its other color variations

found within the same texture area (through z axis) approaching the Xi value.

The readjustment rate of the colors belonging to the other textures is constant and

depends on the number ðk�mÞ of descriptor bins that a texture contains. The read-

justment rate of the similar variants of the dominant color is not constant but rather

decreases inversely proportional to the distance between the variant colors. Also, the

rate depends on the amount of the dominant color ðkÞ that a texture contains.

The ¯nal descriptor to query the image database is formed by the values of the

three-dimensional vectorWx;y;z using Eq. (15). The above procedure is repeated each

time the user selects a relevant image. Figure 14 depicts the entire process of the

proposed technique.

7.2. Experimental results

Table 12 illustrates the improvements achieved by the proposed Automatic

Relevance Feedback algorithm for queries on the WANG Database after one, two

and three repetitions. Table 13 illustrates the achieved improvements on the

MPEG-7 CCD database. As shown from the results, the proposed method improves

the retrieval scores signi¯cantly.

8. Conclusions and Discussion

In this paper, four descriptors that can be used in indexing and retrieval systems are

proposed. The proposed descriptors are compact, varying in size from 23 to 74 bytes

Fig. 14. The °ow-chart of the proposed ARF.
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per image. The descriptors' structure includes color and texture information. The

experimental results show that the performance of the proposed descriptors is better

than the performance of the similarly-sized MPEG-7 descriptors.

We propose two set of descriptors which leads to similar results. However, the

FCTH descriptor and its related C.FCTH descriptor produce more robust results

when retrieving images with many texture areas, however, they demand higher

computational power and storage space than the CEDD and C.CEDD. On the

other hand, the CEDD and its companion C.CEDD satisfactorily retrieve images

with a small number of texture areas and their required computational power and

storage space is noticeably lower. Therefore, the choice of descriptor depends on

the type of images in the search procedure and on the computational requirements

of the search.

Additionally, in the present paper an Automatic Relevance Feedback method is

proposed. Though extremely simple to implement, the proposed method signi¯cantly

improves image retrieval scores.

The proposed descriptors are designed for use in Internet image retrieval systems

and on databases that frequently store elements for a very large number of images.

Table 12. Results from the WANG image database.

Descriptor Query ANMRR

204 327 522 600 703

Default results

CEDD 0.314 0.127 0.347 0.059 0.115 0.25283

FCTH 0.235 0.114 0.323 0.026 0.092 0.27369
C.CEDD 0.316 0.140 0.452 0.069 0.088 0.30637

C.FCTH 0.320 0.224 0.493 0.013 0.116 0.31537

First repetition
RF Image 285 317 551 609 791

CEDD 0.303 0.085 0.386 0.046 0.093 0.23332

FCTH 0.204 0.089 0.324 0.019 0.079 0.25443

C.CEDD 0.265 0.109 0.441 0.034 0.084 0.29229
C.FCTH 0.274 0.186 0.324 0.010 0.093 0.30220

Second repetition

RF Image 240 346 535 633 796
CEDD 0.294 0.071 0.293 0.065 0.090 0.21341

FCTH 0.183 0.083 0.308 0.022 0.075 0.23442

C.CEDD 0.251 0.116 0.370 0.104 0.081 0.26887

C.FCTH 0.245 0.171 0.308 0.012 0.090 0.29776

Third repetition

RF Image 284 320 503 644 761

CEDD 0.273 0.045 0.285 0.034 0.081 0.19776
FCTH 0.214 0.049 0.316 0.016 0.067 0.20834

C.CEDD 0.230 0.073 0.365 0.035 0.077 0.25336

C.FCTH 0.241 0.108 0.316 0.012 0.081 0.27557
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Such web-based image retrieval engines may need to execute retrieval on a few

million images and must therefore use feature descriptors that are as compact as

possible. The proposed descriptors meet these requirements.

All the proposed descriptors, img(Rummager) and img(Anaktisi) are programmed

in C# and Java and are available as open source projects under the GNU General

Public License (GPL).
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Table 13. Results from the MPEG-7 CCD image database.

Descriptor Query ANMRR

i0121 add5 img00133 add3 img00438 s3

Default results

CEDD 0 0 0.033 0.08511

FCTH 0 0.037 0.003 0.10343
C.CEDD 0 0.014 0.167 0.12655

C.FCTH 0 0.065 0 0.15977

First repetition
RF Image i0123 add5 img00134 add3 img00444 s3

CEDD 0 0 0.022 0.05334

FCTH 0 0.060 0 0.09883

C.CEDD 0 0.009 0.031 0.11341
C.FCTH 0 0.097 0.000 0.14333

Second repetition

RF Image i26e add1 img00131 add3 img00439 s3
CEDD 0 0 0.033 0.03445

FCTH 0 0 0 0.08788

C.CEDD 0 0.005 0.008 0.10443

C.FCTH 0 0.009 0.000 0.12221

Third repetition

RF Image 0131 add5 img00135 add3 img00440 s3

CEDD 0 0 0 0.03122
FCTH 0 0.014 0 0.07322

C.CEDD 0 0 0.006 0.10443

C.FCTH 0 0.009 0 0.11322
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Appendix A. The Fuzzy Inference Rules

Table 14. The fuzzy inference rules which bind the fuzzy ten-bin histogram.

IF INPUT AND AND THEN

HUE IS INPUT INPUT OUTPUT

S IS V IS BIN IS

Any color 0 0 Black

Any color 1 0 Black

Any color 0 2 White
Any color 0 1 Gray

Red to orange 1 1 Red

Red to orange 1 2 Red
Orange 1 1 Orange

Orange 1 2 Orange

Yellow 1 1 Yellow

Yellow 1 2 Yellow
Green 1 1 Green

Green 1 2 Green

Cyan 1 1 Cyan

Cyan 1 2 Cyan
Blue 1 1 Blue

Blue 1 2 Blue

Magenta 1 1 Magenta

Magenta 1 2 Magenta
Magenta to red 1 1 Red

Magenta to red 1 2 Red

Table 15. The fuzzy inference rules which bind the fuzzy 24-bin

histogram.

IF INPUT S IS AND INPUT V IS THEN OUTPUT BIN IS

1 1 Color

0 0 Dark color

0 1 Light color
1 0 Dark color

Table 16. The fuzzy inference rules which bind the fuzzy

eight-bin texture histogram.

IF AND AND THEN OUTPUT BIN IS

INPUT INPUT INPUT

FHH IS FHL IS FLH IS

0 0 0 Low energy linear

0 0 1 Low energy horizontal
0 1 0 Low energy vertical

0 1 1 Low energy horizontal

and vertical

1 0 0 High energy linear
1 0 1 High energy horizontal

1 1 0 High energy vertical

1 1 1 High energy horizontal

and vertical
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Appendix B. Membership Functions Limits

Table 17. Fuzzy color system.

Activation value

Fuzzy ten-bin color system 0 1 1 0

Membership function Limits position

HUE

Red to orange 0 0 5 10

Orange 5 10 35 50
Yellow 35 50 70 85

Green 70 85 150 165

Cyan 150 165 195 205

Blue 195 205 265 280
Magenta 265 280 315 330

Magenta to red 315 330 360 360

SATURATION
0 0 0 10 75

1 10 75 255 255

VALUE
0 0 0 10 75

1 10 75 180 200

2 180 200 255 255

Activation value

Fuzzy 24-bin color system 0 1 1 0

Membership Function Limits position

SATURATION

0 0 0 68 188

1 68 188 255 255

VALUE

0 0 0 68 188

1 68 188 255 255

Table 18. Fuzzy six-bin texture system.

Activation value

0 1 1 0

Membership function Limits position

FLH and FHL

0 0 0 20 90

1 20 90 255 255

FHH

0 0 0 20 80
1 20 80 255 255
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