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Chapter 10
Employing Cellular Automata for Shaping
Accurate Morphology Maps Using Scattered
Data from Robotics’ Missions

Athanasios Ch. Kapoutsis, Savvas A. Chatzichristofis,
Georgios Ch. Sirakoulis, Lefteris Doitsidis and Elias B. Kosmatopoulos

Abstract Accurate maps are essential in the case of robot teams, so that they can
operate autonomously and accomplish their tasks efficiently. In this work we present
an approach which allows the generation of detailed maps, suitable for robot navi-
gation, from a mesh of sparse points using Cellular Automata and simple evolutions
rules. The entire map area can be considered as a 2DCellular Automaton (CA)where
the value at each CA cell represents the height of the ground in the corresponding
coordinates. The set of measurements form the original state of the CA. The CA
rules are responsible for generating the intermediate heights among the real mea-
surements. The proposedmethod can automatically adjust its rules, so as to encapture
local morphological attributes, using a pre-processing procedure in the set of mea-
surements. Themain advantage of the proposed approach is the ability to maintain an
accurately reconstruction even in cases where the number of measurements are sig-
nificant reduced. Experiments have been conducted employing data collected from
two totally different real-word environments. In the first case the proposed approach
is applied, so as to build a detailedmap of a large unknown underwater area inOporto,
Portugal. The second case concerns data collected by a team of aerial robots in real
experiments in an area near Zurich, Switzerland and is also used for the evaluation
of the approach. The data collected, in the two aforementioned cases, are extracted
using different kind of sensors and robots, thus demonstrating the applicability of
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our approach in different kind of devices. The proposed method outperforms the
performance of other well-known methods in literature thus enabling its application
for real robot navigation.

10.1 Introduction

Scattered data interpolation refers to the problem of generating the intermediate val-
ues through a non-uniform, unpredictable distribution of data samples. This numer-
ical analysis method can be adapted in a variety of engineering fields where data is
often measured or produced at random and irregular positions. The goal of interpo-
lation is to find the best way to propagate the data, finding an underlying function
[1] or utilizing the information of the neighborhood [2] and etc., onto all positions
in the domain.

There are three principal sources of scattered data: measured values of physical
quantities, experimental results and computational values [3]. This chapter focuses in
the investigation of the first category without losing the ability of direct adjustment in
other types of applications. Non-uniform measured values of physical quantities are
collected in geology,meteorology, oceanography, cartography,mining, etc.Although
our method applies in any of the previous categories we limit our presentation to
measurement data obtained by robot teams.

In general, a key element to the successful operation of a robot team is the ability to
perceive the environment in which it operates and therefore be able to function with
the highest level of autonomy. Currently several types of robots including ground [4],
aerial [5], surface or underwater robots [6] or even heterogeneous teams consisted
of different type of robots [7] are deployed in different type of missions utilizing a
diverse set of sensors. In all cases the key questions is how the data gathered by the
team members, will be processed and transformed into meaningful information, in
the form of maps so that they can be used by the robots. Usually the data collected
are in the form of scattered and often noisy data.

In recent literature numerous applications of robots used formapping of regions of
interest (see e.g., Fig. 10.1) are reported. In the case ofMicroAerialVehicles (MAVs),
they have been used both in indoors [8] or outdoors [9, 10] environments using laser
rangefinder sensor and a front-looking stereo camera as the main sensor respectively.
A fully autonomous system using a team of MAVs has been used to construct maps
of an unknown environment using a state-of-the-art visual-SLAM algorithm which
tracks the pose of the camera while simultaneously and autonomously, building an
incremental map of the surrounding environment [11].

In the case of underwater missions the state-of-the-art sensors, for Autonomous
Underwater Vehicles and for mapping the sea-bottom, are bathymeters (sonars)
or range scans [6, 12]. Furthermore, one of the sensors that is in common to all
Autonomous Ground Vehicles is the sensor to perceive the environment and their
movement (range sensing devices) [4].
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Fig. 10.1 Real life applications of teams of Autonomous Vehicles, operating under different envi-
ronment, constructed under different design architectures. a Unmanned Aerial Vehicles (UAVs) in
continuous infrastructure monitoring to prevent accidents [5]. b Autonomous Underwater Vehi-
cles (AUVs) for underwater archeology and post-disaster infrastructure inspection. c Autonomous
Ground Vehicles (AGVs) during ground surveillance task

In all the aforementioned cases the vehicles’ sensors produce either directly or
after some processing a pool of scattered measurements of the environment in which
they are operating. The elaboration of these measurements can be done either on-
line or off-line. A successful demonstration of the on-line case is presented in [13]
were a team of Autonomous Underwater Vehicles (AUVs) has efficiently and fully-
autonomously navigated in a dynamic environment. In the off-line scenario, the
robots have to follow a predefined trajectory gathering the corresponding points.
After the completion of the mission the interpolation methods are used to produce
the desired map. Despite the fact that, in the off-line scenario, a a-priori information
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about the exact location of the measurements could be used in order to improved
the performance of the interpolation process, crucial information, about the specific
morphology of the area, may be lost.

There is, no unique solution to the interpolation problem, resulting in different
fields when alternative techniques are applied to the same discrete data set. Since
the interpolation methods in bibliography are numerous, we have used as evaluation
methods four of the most common and most general applicable ones:

1. Linear
Linear interpolation is the simplest method of getting values at positions between
the data points. The points are simply joined by straight line segments. Each
segment (bounded by two data points) can be interpolated independently. The
parameter mu defines where to estimate the value on the interpolated line, it is 0
at the first point and 1 and the second point. For interpolated values between the
two points mu ranges between 0 and 1.

y(x) = y1 × (1 − mu) + y2 × mu (10.1)

2. Nearest Neighbors
The nearest neighbors (NN) method predicts the value of an attribute at an
arbitrary point based on the value of the nearest sample by drawing perpen-
dicular bisectors between sampled points (n), forming such as Thiessen (or
Dirichlet/Voronoi) polygons (Vi , i = 1, 2, . . . , n). This produces one polygon
per sample and the sample is located in the center of the polygon, such that in
each polygon all points are nearer to its enclosed sample point than to any other
sample points [14–16]. The estimations of the attribute at arbitrary points within
polygon Vi are the measured value at the nearest single sampled data point xi

that is ẑ(x0) = z(xi ). The weights are:

λi =
{
1 if xi ∈ Vi

0 otherwise
(10.2)

All points (or locations) within each polygon are assigned the same value
[15, 16]. A number of algorithms exist to generate the polygons [17], includ-
ing pycnophylactic interpolation [18].

3. Natural
The natural neighbors method was introduced by Sibson (1981). It combines
the best features of NN and Triangular Irregular Network [16]. The first step
is a triangulation of the data by Delauneys method, in which the apices of the
triangles are the sample points in adjacent Thiessen polygons. This triangulation
is unique except where the data are on a regular rectangular grid. To estimate the
value of a point, it is inserted into the tessellation and then its value is determined
by sample points within its bounding polygons. For each neighbors, the area of
the portion of its original polygon that became incorporated in the tile of the
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new point is calculated. These areas are scaled to sum 1 and are used as weights
for the corresponding samples [16]. This method can provide a more smooth
approximation to the underlying “true” function.

4. Cubic
A cubic spline is a spline constructed of piecewise third-order polynomials which
pass through a set of N control points. The polynomials describe pieces of a line
or surface (i.e., they are fitted to a small number of data points exactly) and are
fitted together so that they join smoothly [16, 18]. The places where the pieces
join are called knots. The choice of knots is arbitrary and may have a dramatic
impact on the estimation [18]. Splines with few knots are generally smoother
than splines with many knots; however, increasing the number of knots usually
increases the fit of the spline function to the data. Knots give the curve freedom
to bend to more closely follow the data.

In this work we propose a Cellular Automata (CA) based method for shaping
accurate morphology maps using scattered data collected from multi robot teams.
CA have attracted researchers from several disciplines (e.g., from the field of robotics
[19, 20], image processing [21, 22] and environmental modelling [23]) and a large
number of scientific papers are published every year.

CA, initially were proposed as models of physical systems, where space and time
are discrete and interactions are local, by von Neumann [24]. Any physical system
satisfying differential equations may be approximated by a CA, by introducing finite
differences and discrete variables [25–31]. Additionally, CA are one of the compu-
tational structures best suited for a VLSI realization [32–35]. The CA architecture
offers a number of advantages and beneficial features such as simplicity, regularity,
ease of mask generation, silicon-area utilization, and locality of interconnections
[26, 33].

In order to evaluate the proposed approach, experiments conducted employing
real-word data collected from two different types of robot teams. Initially, using the
proposed CA based method for shaping accurate morphology maps, a detailed map
of a large unknown underwater area in Oporto, Portugal was constructed. In the
sequel, the proposed approach generates a detailed map using data collected from
an area near Zurich, Switzerland, by a team of aerial robots. It is worth noting that
the collected data, in the two experimental setups, are captured employing different
type of sensors. In both cases, the proposed CA based method outperforms the
performance of several other well-known methods from the literature.

The rest of the chapter is organized as follows. Section10.2.1 demonstrates the
problem of scattered data interpolation in strict notation. In Sect. 10.2.2, we demon-
strate the exact steps of the proposed methodology using CA. Section10.3 presents
a series of experiments carried out with measurements from real robot systems.
Conclusions and future steps are given in Sect. 10.4.
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10.2 CA Based Methodology for Shaping Morphology Maps
Using Scattered Data

10.2.1 Problem Formulation

Without loss of generality, we can assume that the area to be mapped is constrained
within a rectangle in the (x, y)-coordinates, i.e., the mobile robots are called to map
the area constrained in the (x, y)-coordinates as follows:

U =
{

x, y : x ∈ [xmin, xmax], y ∈ [ymin, ymax]
}

(10.3)

This rectangle can be divided into discrete cells, in such a way that if all the values
in each cell are known, the representation of this rectangle would approximate the
real surface.

xi+1 = xi + �x,�x = (xmax−xmin)
L

yi+1 = yi + �y,�y = (ymax−ymin)
M

(10.4)

where L and M denote the desirable discretization in x and y axis correspondingly.
The goal is from an, arbitrarily located, set of data (xi , yi , fi ) , i = 1, . . . , N that rep-
resent the error-free1 measurements taken from different type of sensors, to generate
the values (x, y) ∈ U in all the cells of the rectangle.

10.2.2 Proposed Methodology

The basic steps of the proposed CA methodology are given as follows:
STEP 1: The map area is divided into a matrix, and for now on it will be referred

as C, of identical square cells that represented by a CA, where each cell of the map
is considered as a CA cell.

STEP 2: In the second step is applied the registration between the measurements’
data and the corresponding CA cells. In other words every set (xi , yi , fi ) of mea-
surements has to be placed in the appropriate cell C (xi , yi ) = fi . After this step we
have defined the dimensions of our CA and its initial conditions.

STEP 3: The evolution rules of a m CA cell, where m : (mx , my), are chosen as
a combination of two different approaches. On the one hand, a direct “propagation”
of the information is applied, following the Moore’s neighbor (Eq. 10.5), around
the initially known cells. Please note that the logical expression: ||i − mx || = 1 or

1 We will assume that the robot’s measurements are filtered and free of bias/Gaussian noise. It has
to be emphasized that the proposed approach can be extended to deal with noisy data giving weights
about the confidence level of the measurement’s accuracy.
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Fig. 10.2 The initial
conditions of CA

|| j − my || = 1 has to be true in order to follow the Moore’s neighborhood. If a cell
is affected by more than one value in the same step, a simple average is applied (see
Fig. 10.3).

Fig. 10.3 The evolution
rules. a Direct “propagation”.
b Using Remote Information
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Cti
1 (mx , my) =

{Cti (i, j) if Cti−1
1 (mx , my) = 0

Cti−1
1 (mx , my) otherwise

(10.5)

On the other hand, an evolution rule using information of the closest neighbors is
applied. We calculate the estimated value using a weighted average of the neighbors
that are in a pre-specified (see 10.2.3) “radius of influence” (RD) as shown inEq.10.6:

Cti
2 (mx , my) =

∑n
k=1 Cti−1

(
kx , ky

)
/Md(k, m)2∑n

k=1 1/Md(k, m)2
(10.6)

STEP 4: Subsequently, a merging procedure is applied in order to render the final
value of the estimated cell, which, can be represented as follows:

Cti (mx , my) = a × Cti
1 (mx , my) + (1 − a) × Cti

2 (mx , my) (10.7)

Here, a servers as smoothing factor to give more/less weight to the one term against
the other.

STEP 5: Repeat STEP 3–4 until every cell of the CA obtain an estimation about
its height.

10.2.3 Define Adaptively the “Radius of Influence”

The RD corresponds to the maximum distance that is allowed between the current
CA cell and every other cell with value already calculated. It defines how far “travels”
the information, from the measurements, on the terrain. There is no global value for
the RD that can be applied in every map, e.g., if the area to be mapped was “flat”,
probably a good strategy would be to choose a “big” value for the RD. Information
about themorphology of the area, and thus about theRD, can be derived by exploiting
the distribution of the measurements’ set. The following steps are describing the
dynamic adjustment of the RD, utilizing the robot’s measurements.

STEP 1: The measurements sets have specific attributes, that could differ from
a sub-area to another. Initially these measurements data have to be classified, in an
optimal manner. To keep the analysis as general as possible, it will be considered
that the number of classes is unknown, and have to be investigated as the initial mea-
surements change. Based on the above we can formulate the following optimization
problem,

minimize
k

F(k) = ∑N
i=1 || [xc yc hc]i − [xi yi hi ] ||

subject to k ≥ 2
(10.8)

where N is the number of the measurements, k denotes the number of centroids,
[xi yi hi ] denotes the i-th measurement vector and [xc yc hc]i the centroid of the
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class, where with the current centroids’ selection, belongs the i-th measurement.
The cost function F(k) can be separated in two terms.

Whenever an updated value, about the number of classes, is calculated, the algo-
rithm K -means is called to find the 3 dimension vector of each centroid. Only when
the iterative procedure of K-means ends, the cost function F(k) (Eq.10.8) is calcu-
lated again to evaluate the difference in classification with the modified number of
centroids.

Taking into account that the dimensions of the centroids are in three dimensional
space, the above procedure can be completed in a reasonable time using an optimiza-
tion algorithm such as Hill climbing.

STEP 2: Having defined the optimal number of classes kopt and the corresponding
centroids (using K-means) we can now proceed to the final calculation about the RD.

RD = F(kopt)

N
(10.9)

The RD corresponds to the influence of the current cell in its neighborhood. If we
calculate the average of distances between all the measurements and their centroids
(Eq.10.9), we can have a rough estimation about the spatial influence of every cell
around its neighborhood.

10.3 Experiments

In this section we validate the proposed approach using real data collected by two
different types of robotic devices using different sensors. In both cases the robots
were collecting the data in order to construct a map to assist them in performing a
predefined mission. The first case refers to data collected from Oporto’s harbor area
using bathymetry sensors [36], while the second test case refers to data collected
using a camera mounted on a single aerial robot [11]. The diversity of the data
collected from two different type of devices is used as a proof of concept of the
generality and applicability of our approach.

10.3.1 Underwater Scenario—Oporto harbor

Using themethod described in detail in Sect. 10.2.2, we have reconstructed the under-
sea morphology of a sub-region of Oporto’s harbor. The underwater region covers
an area of 200 × 200 points spaced by 5m. To acquire full knowledge of the sea-
floor we should have known the value in each of the 40,000 points arising from the
previous grid. In Fig. 10.4 we present the real morphology of the area and the infor-
mation which will be used as ground truth to evaluate our approach. In a realistic
scenario the robot team, in this case a team of autonomous underwater vehicles,
would have returned after the completion of a mission with a data set much smaller
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Fig. 10.4 Ground truth—40,000 points—real representation of the operation area

Fig. 10.5 Initial measurements—308 points gathered by swarm of robots

than the one needed to have a detailed representation of the environment monitored.
Figure10.5 depicts the visualization of real scenario where the AUVs gathered 308
measurements points. It is worth-noticing that this subset (derived from robot’s mea-
surements) constitutes only the 0.77% 2 of the total area to be mapped, and for that
is considered a severe experiment.

The details of the CA environment are as follows:

• 2-D CA with 200 × 200 cells
• The initial condition of the CA are the 308 measurements as depicted in Fig. 10.5
and the unknown cells are filled with −1

• The evolution rules are as explained in the previous section (Eq.10.7)

2 Note that now and in the next experiments there has not been any analysis about the distribution that
is followed by the measurements. Different modalities, like different number of robots or different
type of sensors, etc., will lead to a different data distribution. The above problem is tackled by
conducted the same experiment 500 times with the initial measurements stochastically changed and
keep the average of error.
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The Fig. 10.6 demonstrates the incremental evolution of the CA over the time. The
whole procedure, even in this case with the extremely sparse measurements data, is
completed in 20 time-steps, renders the procedure directly applicable to real-time
interpolation systems.

As evaluation, theFig. 10.7 illustrates the results of different interpolationmethods
for the same data sets. The visual superiority of the proposed method is appeared
also in extended simulations, where a batch of 500 iterations, with different initial
measurements (conditions), per method is conducted and the average of L2 error
with ground-truth is calculated. The results are shown in Table10.1.

10.3.2 Aerial robots Scenario

To test the efficiency and stability of the proposed approach, regardless of the area
which is called to reconstruct the morphology, we have also tested it in data gathered
from aerial robots. In this case we will demonstrate the reconstruction of a “village
like” area based on data collected in an area near Zurich, Switzerland. The initial data
and the respective map were collected using a state-of-the-art visual-SLAM algo-
rithm which tracks the pose of the camera while simultaneously and autonomously,
building an incremental map of the surrounding environment. More details regarding
the extraction methodology are given in [8, 37].

This area is consisted of ruins and small urban structures and for that has high rate
of inhomogeneity and the transitions among different sub-areas are often steep. For
those reasons the interpolation in measurements’ data consists in a very challeng-
ing task. In Fig. 10.8 is presented the real surface with 13,855 points Fig. 10.8a and
the reconstructed one from 462 (3.3%) measurements: using the proposed method
Fig. 10.8b, while in Fig. 10.9 as evaluation we illustrate the results of the different
interpolation methods for the same data sets. The average of L2-Norm for this ini-
tial configuration for each method is presented in the second row of Table10.2. The
Table10.2 is an analysis of the impact that has the reduction of the initial measure-
ments in the final result of the interpolation procedure.

As robots are reducing their sampling rates of their sensors or operating for less
time the pool of gathered measurements will be smaller and thus the interpola-
tion procedure will have less accuracy, regardless of the choice of the interpolation
method and that’s something that is imprinted in the Table10.2. The proposedmethod
achieves better performance not only as weighted average, but in every different con-
figuration in number of measurements. This property can be achieved because the
proposed method can adapt its parameters in the available data set (Sect. 10.2.3) and
finally is able to manage to elaborate them in a efficient fashion.
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Fig. 10.6 Incremental evolution based on the CA methodology. The figures illustrate the progress
at 25, 50, 75 and 100%, correspondingly, of the CA process
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Fig. 10.7 Results using other interpolation methods. a Linear, b Natural, c Nearest neighbors,
d Cubic
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Table 10.1 L2-Norm between the ground truth and the constructed map for each method for each
number of initial measurements

L2-Norm Linear Natural Nearest neighbors Cubic Proposed

Weighted average 340.1553 340.8651 288.520 338.520 266.9886

Fig. 10.8 Zurich area—interpolation results over 462 points (3.3%), a Ground truth b Proposed
methodology using CA

10.4 Conclusions and Future Work

In this chapter, a novel method is presented using CA for scattered data interpo-
lation. We have successfully demonstrated the composition of morphology maps
from sensor’s measurements that outperform the most common used ones in all the
test-cases. The efficiency of the methodology relies, both on the ability of CA to
efficiently process elements that are arranged in a regular grid of identical cells, and
on the adaptability on the local morphology of each region, analyzing the variety in
measurements.

We are interested in considering situations where the robots’ measurements con-
tain errors. In this case, the problem becomes even harder since the CA now have
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Fig. 10.9 Zurich area—Results using other interpolation methods, namely a Linear, b Natural, c
Nearest neighbors, d Cubic
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Table 10.2 L2-Norm between the ground truth and the constructed map for each method for each
number of initial measurements

Initial points% Linear Natural Nearest neighbors Cubic Proposed

1386 (10) 361.117 343.837 407.426 355.361 338.004

462 (3.3) 499.623 477.9376 562.482 507.109 463.655

277 (2) 593.827 571.870 656.690 602.876 544.507

139 (1) 754.819 734.043 826.645 772.014 699.616

69 (0.5) 959.421 938.274 1032.046 933.780 866.569

46 (0.33) 1108.377 1086.865 1140.229 1079.947 928.137

Weighted average 720.022 699.247 778.214 715.578 657.203

to solve two problems. In the case CA will have to face a dual problem, since they
will have to identify which measurements are useful in the process and which have
to be ignored or corrected and also must be able to make an estimation, followed the
proposed methodology, about the morphology of the terrain, in real-time to keep its
directly applicable nature. We would like also to investigate scenarios in which the
objective is to build the morphology map of sub-region, where the robots do not visit
at all (extrapolation) or in which the environment changes over time.
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