
Neapolis University

HEPHAESTUS Repository http://hephaestus.nup.ac.cy

School of Information Sciences Conference papers

2013

Golden Retriever - A Java Based Open

Source Image Retrieval Engine

Tsochatzidis, Lazaros T.

ACM

http://hdl.handle.net/11728/10212

Downloaded from HEPHAESTUS Repository, Neapolis University institutional repository

Golden Retriever - A Java Based Open Source Image
Retrieval Engine

Lazaros T. Tsochatzidis, Chryssanthi Iakovidou, Savvas A. Chatzichristofis and
Yiannis S. Boutalis

Democtitus University of Thrace
Department of Electrical and Computer Engineering

Xanthi, Greece
{lazatsoc,ciakovid,schatzic,ybout}@ee.duth.gr

——
SUBMITTED TO ACM MULTIMEDIA 2013 OPEN SOURCE SOFTWARE COMPETITION

ABSTRACT
Golden Retriever Image Retrieval Engine (GRire) is an open
source light weight Java library developed for Content Based
Image Retrieval (CBIR) tasks, employing the Bag of Visual
Words (BOVW) model. It provides a complete framework
for creating CBIR system including image analysis tools,
classifiers, weighting schemes etc., for efficient indexing and
retrieval procedures. Its eminent feature is its extensibility,
achieved through the open source nature of the library as
well as a user-friendly embedded plug-in system.

GRire is available on-line along with install and develop-
ment documentation on http://www.grire.net and on its
Google Code page http://code.google.com/p/grire. It is
distributed either as a Java library or as a standalone Java
application, both GPL licensed.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

Keywords
Image Retrieval, Visual Words, Bag-of-Visual-Words, Open
Source, Image Search, Image Indexing

1. INTRODUCTION
Content based image retrieval approaches can be mainly

classified into two groups based on the types of low level
visual features that they employ. The first group consist
of methods that use global features while the second one is
formed by approaches that employ local features. Addition-
ally, CBIR systems can be separated into two general classes
based on the type of the queries they handle. In applied
research, CBIR systems are retrieving images with similar
visual characteristics to the query image (e.g. if the query

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
MM’13, October 21–25, 2013, Barcelona, Spain.
Copyright 2013 ACM 978-1-4503-2404-5/13/10 ...$15.00.

is a red image, the retrieved images are also red)[4]. To sup-
port these queries, mainly global features are employed. At
the same time, many advanced systems are able to recognize
the context of the query and to retrieve semantically similar
images (e.g. if the query is a red luxurious car, the retrieved
images are depicting a Ferrari). In this case, these queries
are mainly supported by local features.

Recent CBIR approaches have strongly focused on the
combination of global and local features. These approaches
are employing the local features in order to produce a holis-
tic, global representation of the image. An example of such
approaches is the bag-of-visual-words (BOVW) approach.
This BOVW representation is analogous to the bag-of-words
representation, a well-known and widely used method in text
retrieval, where a document is represented by a set of dis-
tinct keywords.

BOVW methods are fast becoming a widely used repre-
sentation for CBIR, mainly for three reasons: their better re-
trieval effectiveness over global feature representations, the
much better efficiency than local feature representations and
the fact that they can be used both, by systems that attempt
to identify the content of the query to retrieve images with
semantically similar content and by systems designed to re-
trieve images with similar visual concept to the query.

Figure 1: Golden Retriever Logo.

This paper presents a new open source and extensible Java
image retrieval library named Golder Retriever. The scope
of the library is to provide solutions on how to integrate
CBIR techniques in an easy way, on a wide range of appli-
cations. Additionally, GRire provides a testing platform for
researchers that could be used to evaluate existing or new
CBIR approaches.

Current version of the library is mainly focused on the
BOVW approach, integrating a variety of local features,
classifiers as well as methods from the field of information
retrieval adjusted to meet the image retrieval perspective.

847

2. THE GRIRE PROJECT
The main objective of the project is to help developers

create and evaluate their methods in any image database
with minimum effort and without needing to concern about
the details of the model itself. Furthermore, developers are
welcome to integrate custom components, such as feature
extractors and descriptors, into the GRire library. Thus, a
whole BOVW system can be created and tested adopting
the provided implemented weighting schemes and similarity
models. Towards this direction, GRire combines an adapt-
able and easy-to-use plug-in system together with a powerful
and efficient indexing and retrieving mechanism.

2.1 Project Structure
The GRire project can be operated in two ways; either

as a Java library to be integrated into other applications
or through an easily used graphical user interface called
GRireFX. These two versions are distributed in the same
file available for download, under the packages org.grire

and org.grirefx respectively and they both provide the
same functionality and extensibility. Essentially, the GRire
library consists of two main parts: the core and the compo-
nents.

2.2 The Core
The core of GRire implements the main work flow for the

indexing and the retrieval procedures using a BOVW archi-
tecture. It consists of the classes required by the model and
it is considered to be the ‘fixed’ part of the library. The
classes of the core are organized into two different types
hereby referred to as Structures and Functions. Structures
are objects responsible for handling database’s operations
such as storing and fetching. On the other hand, Func-
tions implement the procedures for generating the model,
like indexing and retrieving. Furthermore, Structures are
usually an ‘extra layer’ above the GeneralStorer which pro-
vides more basic structures described in sections 2.3 and 3.2.

2.2.1 Structures

ImagePool An image pool is a collection of images. It
pairs a unique id with the absolute path of an image
and stores it in a database. It provides all the required
methods for adding and deleting an image from the
pool.

PoolFeatures This structure is the collection of features
extracted from an ImagePool.

Codebook The main component of the BOVW model. It is
a lexicon of key-features selected from the PoolFeatures
structure using various ways (clustering etc.).

Index This structure stores the representation (descriptor)
of each image.

2.2.2 Functions

Importer This is a simple class that allows batch importing
of image from multiple folders.

PoolFeatureExtractor It extracts features from all the
images part of an ImagePool to generate a PoolFea-
ture structure for storing them. These features are ex-
tracted using a FeatureExctractor component (kindly
refer to section 2.3).

ClusteringCodebookFactory This class creates a new lex-
icon (codebook) by performing a ClusteringAlgorithm
on the features provided. By default, the Clustering-
CodebookFactory will create clusters using the 30% of
the data but users have the ability to modify the per-
centage. The training set is stored temporary in the
file system.

IndexFactory This function produces the index of the im-
age representations (descriptors) using the PoolFea-
tures extracted earlier. The representation for each
image is created according to the supplied VisualWord-
Descriptor component (details in section 2.3).

QueryPerformer This class performs the searching proce-
dure for one or more queries, given as input, generating
a TREC formatted file with the results for easy and
accurate evaluation.

2.3 The Components
The BOVW model can be assembled by several different

components that execute discrete steps of the architecture,
thus making it highly customizable. The multiple possible
component combinations provide a great variety of exper-
imental setups of the model. Each component allows for
independent enhancement attracting researchers/developers
from varying scientific fields to explore and extend.

Type Component Name
GeneralStorer MapDB, See section 3.2

FeatureExtractor

SURF [3]
SIFT [6]
ORB [8]
MSER [7] + FREAK [1]
CEDD [5] (Bag of CEDDs1)

ClusteringAlgorithm
K-Means
SGONG [2]

SimilarityMeasure
Euclidean Distance
Cosine Similarity

WeightingScheme SMART [9]
Stemmer Euclidean Stemmer

Table 1: A list of the currently implemented Com-
ponents

These components are interfaces whose implementations
are given as arguments to the core classes. A list of the
components is shown below while Table 1 briefly presents
the implemented components:

1. GeneralStorer. It manages the way data are written
in the file system, providing simple structures such as
maps and sorted maps.

2. FeatureExtractor. It is employed from the core for
the extraction of local features from an image.

1The proposed library has the ability to adjust the informa-
tion and the advantages derived from the Global low level
Features (GF), into the BOVW model. GRire separates the
images into a preset number of image blocks and calculates
a global descriptor (e.g. CEDD) from each one. Based on
this approach, every image is represented with multiple GFs.
In the sequel, these global features are considered as visual
words.

848

3. ClusteringAlgorithm. This component implements a
clustering algorithm used for the creation of the code-
book.

4. SimilarityMeasure. It is used for the comparison of
the representation (descriptor).

5. VisualWordDescriptor. This component’s task is to
form the representation (descriptor) of an image using
all the previously created structures.

6. WeightingScheme. The weighting scheme used during
the retrieval process defines how the final representa-
tion (descriptor) of an image will be formed, just before
it is compared with other representations.

7. Stemmer. Stemmers are the objects that define how a
visual word derived from an image will be assigned to
a word from the codebook.

2.4 Work-flow
Initially, the images are imported into an ImagePool ob-

ject. Then, the PoolFeatureExtractor extracts the local
features from the imported images, using a FeatureExtrac-

tor component and stores them in a PoolFeatures struc-
ture. In the sequel, the IndexFactory creates the repre-
sentation (descriptor) for each image using a VisualWord-

Descriptor component, according to a Codebook structure.
The results are stored it in the Index. The codebook was
created by the CluteringCodebookFactory class in advance,
using a ClusteringAlgorithm component on PoolFeatures.
The system is now ready to perform any retrieval task us-
ing the QueryPerformer together with the WeightingScheme
and SimilarityMeasure components.

3. TECHNICAL DETAILS

3.1 Extending GRire
GRire has been designed with particular attention to be

highly customizable giving the opportunity to developers /
researchers to implement their own methods and integrate
them in the framework. This is achieved through the plug-
in system which adopts the open source jspf 2. Developers
can easily create a plug-in without any constraints on the
number of the needed parameters so as to implement one
of the components described earlier. For the users’ conve-
nience a set of common parameters has been predefined to be
recognizable by the framework. The plug-in interacts with
GRire notifying it about the number and the type of the
parameters and the program dynamically prompts the user
for the right input method. Every plug-in has the following
functionality:

• It implements only one component of GRire.

• It may require input parameters.

• It may require a setup process manually called by the
user before it can be executed.

• Additional parameters for the aforementioned setup
process may be also required.

• Default initialization values may be available for all or
some of the parameters.

2https://code.google.com/p/jspf/

3.2 Storage
The GRire library employs the very powerful and promis-

ing MapDB3 that supports fast and efficient storage and se-
rialization of the data. This embedded database provides
maps (Hash, Sorted and Multi-maps) as basic structures
that are used to form all other more complex needed struc-
tures (Codebook etc.). MapDB offers its own serialization,
compression and cache memory system while it is portable
and allows processing of large amount of data, with mini-
mum overhead in memory.

3.3 Compiling and Installation
It is decided that the components of GRire will be dis-

tributed separately from its core, grouped in plug-in packs.
Every component may have its own dependencies, which
may be external libraries or even programs. The git reposi-
tory of the project includes the source code of the core along
with the source code of every component pack that will be
available as plug-in. A universal ant configuration file ac-
companies every module (core and packs) as well as every
plug-in pack.

After obtaining the core jar file, the user can execute it
to launch the GRireFX or import it as an external library
to another Java application. The components can be used
integrated with the following ways:

• If GRire operates as a Java library, then the plug-ins
can be also imported to the application to be used like
any other class.

• If GRire operates through its GUI then a text file
named ‘plugins’ is required to be present in the same
folder as the jar file. This text file contains the paths
to the jar files of the plug-in packs.

4. GRIREFX
For users that do not wish to create their own applica-

tion and just want to test their component of the BOVW
model, the ideal solution is the graphical user interface of
GRire. It is designed not to insert any limitation compared
to the GRire library version, retaining its customizability by
allowing enrichments in the form plug-in. In figure 2 there
is a screen shot of GRireFX while the user is setting up a
multi-query retrieval task. The results of the procedure is a
TREC formated file.

As mentioned before, GRireFX automatically recognizes
the number and the types of the parameters, as well as their
default values (if they exist), and dynamically requests from
the user the corresponding input. Figure 3 illustrates the
dynamic tree of parameters that grows according to every
component’s needs while the user makes interacts with the
interface.

5. PERFORMANCE
Indicative experiments have been performed to evaluate

the performance of the GRire library. It is worth noting
that, the proposed project is a framework for implement-
ing and integrating various features with different compu-
tational costs and complexity, so the time needed for the
indexing as well as for the retrieval procedure greatly varies
and depends on the components that will be used (features,

3https://github.com/jankotek/MapDB

849

Figure 2: GRireFX performing a multi-query exper-
iment.

Figure 3: GRireFX dynamically adds leaves to the
tree of parameters.

classifiers, codebook size, weighting scheme, database size,
etc). Table 2 presents the time (in minutes) elapsed for two
different experiments that have been performed.

SURF SIFT
Feature Extraction 109 163
Codebook Generation (K-Means) 73 158
Descriptor Calculation 20 26
Retrieval Procedure (100 queries) <2 <2

Table 2: Results of the time needed for each process
measured in minutes.

For the first experiment, the SURF(64) features were used
as the local features, while for the second one, the SIFT(128)
features were employed. In both cases, experiments con-
ducted on the UK-BENCH [7] image dataset (10200 images),
using a codebook of 1024 visual words. For the retrieval pro-
cedure, we executed a multi-query experiment (100 queries
linear search) using the tf-idf weighting scheme and cosine
similarity measure. Experiments carried out on a Core 2
Quad Q6600 CPU with 4GB of RAM system. The storage
needs for the created databases reached a total of 2.89 GB
and 5.48 GB respectively.

6. CONCLUSIONS
This paper presents a new framework for CBIR based on

the BOVW approach, that can be used in a wide range
of applications. The open source nature of the proposed

library allows and encourages researches to extend GRire
by implementing more components, methods and features.
It’s worth noting that apart from a powerful and fast in-
dexing and retrieving mechanism, GRire additionally uses
an extremely easy to use plug-in system. The GRire li-
brary is provided under GPL license and is available on-
line along with install and development documentation on
http://www.grire.net and on its Google Code page http:

//code.google.com/p/grire

7. ACKNOWLEDGMENTS
This research has been co-financed by the European Union

(European Social Fund-ESF) and Greek national funds through
the Operational Program“Education and Lifelong Learning”
of the National Strategic Reference Framework (NSRF)- Re-
search Funding Program: Heracleitus II. Investing in knowl-
edge society through the European Social Fund.

8. REFERENCES
[1] Alexandre Alahi, Raphael Ortiz, and Pierre

Vandergheynst. Freak: Fast retina keypoint. In CVPR,
pages 510–517, 2012.

[2] Antonios Atsalakis and Nikos Papamarkos. Color
reduction and estimation of the number of dominant
colors by using a self-growing and self-organized neural
gas. Eng. Appl. of AI, 19(7):769–786, 2006.

[3] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc
J. Van Gool. Speeded-up robust features (surf).
Computer Vision and Image Understanding,
110(3):346–359, 2008.

[4] S.A. Chatzichristofis, C. Iakovidou, Y. Boutalis, and
O. Marques. Co.vi.wo.: Color visual words based on
non-predefined size codebooks. Cybernetics, IEEE
Transactions on, 43(1):192–205, 2013.

[5] Savvas A. Chatzichristofis and Yiannis S. Boutalis.
Cedd: Color and edge directivity descriptor: A
compact descriptor for image indexing and retrieval. In
ICVS, pages 312–322, 2008.

[6] David G. Lowe. Distinctive image features from
scale-invariant keypoints. International Journal of
Computer Vision, 60(2):91–110, 2004.

[7] D. Nister and H. Stewenius. Scalable recognition with a
vocabulary tree. In CVPR, volume 5, pages 2161–2168,
2006.

[8] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and
Gary Bradski. Orb: an efficient alternative to sift or
surf. In Computer Vision (ICCV), 2011 IEEE
International Conference on, pages 2564–2571. IEEE,
2011.

[9] G. Salton. The SMART Retrieval System - Experiments
in Automatic Document Processing. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1971.

850

