
Neapolis University

HEPHAESTUS Repository http://hephaestus.nup.ac.cy

School of Information Sciences Articles

2018-06-08

Image classification by addition of

spatial information based on histograms

of orthogonal vectors

Zafar, Bushra

PLOS ONE

http://hdl.handle.net/11728/10922

Downloaded from HEPHAESTUS Repository, Neapolis University institutional repository



RESEARCH ARTICLE

Image classification by addition of spatial

information based on histograms of

orthogonal vectors

Bushra Zafar1, Rehan Ashraf1*, Nouman Ali2, Mudassar Ahmed1, Sohail Jabbar1, Savvas

A. Chatzichristofis3

1 Department of Computer Science, National Textile University, Faisalabad, Pakistan, 2 Department of

Software Engineering, Mirpur University of Science & Technology, Mirpur, Azad-Kashmir, Pakistan,

3 Department of Information Science, Neapolis University, Paphos, Cyprus

* rehan@ntu.edu.pk

Abstract

The Bag-of-Visual-Words (BoVW) model is widely used for image classification, object rec-

ognition and image retrieval problems. In BoVW model, the local features are quantized

and 2-D image space is represented in the form of order-less histogram of visual words. The

image classification performance suffers due to the order-less representation of image. This

paper presents a novel image representation that incorporates the spatial information to the

inverted index of BoVW model. The spatial information is added by calculating the global rel-

ative spatial orientation of visual words in a rotation invariant manner. For this, we computed

the geometric relationship between triplets of identical visual words by calculating an orthog-

onal vector relative to each point in the triplets of identical visual words. The histogram of

visual words is calculated on the basis of the magnitude of these orthogonal vectors. This

calculation provides the unique information regarding the relative position of visual words

when they are collinear. The proposed image representation is evaluated by using four stan-

dard image benchmarks. The experimental results and quantitative comparisons demon-

strate that the proposed image representation outperforms the existing state-of-the-art in

terms of classification accuracy.

1 Introduction

One of the most challenging task in computer and robotics vision is to classify images into

semantic categories [1]. Image classification refers to labelling the images with one of the pre-

defined semantic category [2]. The challenges that make image classification a difficult task

are the change in viewpoint, illumination, partial occlusion, clutter, inter and intra-class visual

diversity. To deal with image classification, Bag-of-visual-words (BoVW) model attracted

attention in the research community and proved to be a leading strategy [3]. It is widely used

in literature to deal with problems such as image classification, retrieval, automatic image

annotation and object recognition [4–14].
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In the standard BoVW model, local features are extracted from a set of training images and

quantized into visual words. The images are represented by histograms of visual words. This

representation is orderless as histogram is the count of the number of times a word occurs in

the image. It does not contain details about the location of visual words in 2-D image space

[15, 16].

Various approaches are proposed in the literature to incorporate the spatial information to

BoVW model [15, 17–20]. Some of these add spatial information by using the spatial context

prior to the construction of visual vocabulary [21, 22]. Broadly they can be classified into

two groups [3, 23, 24]. The first group encompasses methods that divides an image into sub-

regions of different shapes and the information about visual words are computed from each of

the selected region. Lazebnik et al. [15] proposed a notable contribution in this domain and

proposed the Spatial Pyramid Matching (SPM). It divides the image space into rectangular

sub-regions in a hierarchically decreasing order. To attain improved performance, visual

words statistics are then aggregated from each rectangular region at each level on the basis

of a weighed scheme [15]. However, SPM captures information only about the approximate

geometric correspondence of visual words and is not invariant to global geometric transforma-

tions [25]. To achieve better performance, the authors used different approaches to incorpo-

rate additional spatial information into the SPM. Zhang et al. [26] proposed log-polar tiling,

where the image space is partitioned into regions of different scales and orientations. Visual

words statistics are compiled from each sector of the tiling to create the histogram. In another

work [27], Zhang et al. proposed different heuristic approaches by employing three frequency

histograms i.e. shapes, pairs and binned log-polar features representation. To attain the photo-

metric image aspects, Yang et al. [28] captured the spatial information that is based on the co-

occurrence information to ascertain the geometric and photometric image aspects. Word Spa-

tial Arrangement (WSA) [29] is another method that infuses the relative spatial position of

visual words by defining each point as origin and partitions the image space into quadrants.

Koph et al. [30] enhanced the classification performance of BoVW model by incorporating

color pyramids in place of spatial pyramids. Instead of dividing the image into spatial tilings,

it is divided on the basis of color information of pixels. BoVW with SPM is sensitive to the

changes in viewpoint and rotations [1]. Zhao et al. [31] proposed a concentric circle structured

multi-scale BoVW using multiple features i.e. color moments, SIFT and Local Binary Patterns

(LBPs).

The second group comprises of methods that encode relationships [18, 25] or co-occur-

rence of visual words [32]. The modeling of geometric spatial relationships between visual

words received relatively little attention as it is computationally expensive [25, 33]. To accel-

erate the computation, this category uses techniques to reduce the size of visual vocabulary

or employs some feature selection techniques. Savarese et al. [18] calculated correlogram to

represent relationships among visual words. As correlogram is a function of distance, the

choice of distance measures affect the outcome and makes this representation vulnerable to

scale changes. Khan et al. [25] made a notable contribution in this domain and incorporated

global spatial information in BoVW model by considering the global geometric relationships

among the Pairs of Identical Words (PIWs). A normalized histogram is created that is based

on angles between these identical visual words termed as PIWAH (Pairs of Identical Visual

Words Angle Histogram). The PIWAH representation is invariant to geometrical transfor-

mations i.e. scaling and translation but is sensitive to rotation variance [23, 25]. Anwar et al.
[23] extended this work to acquire rotation invariant geometric properties, by considering

the orientation of segments formed by Triplets of Identical Visual Words (TIWs). The histo-

gram representation so created is termed as TIWAH (Triplets of Identical Visual Words

Angle Histogram).
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Though the approach of Anwar et al. [23] using angles between identical visual word trip-

lets achieves rotation invariance but loses the information regarding the relative position of

points when they are collinear as can be seen in Fig 1. This article presents a novel way to

model global relative spatial orientation of visual words in a rotation invariant manner. For

this we computed the geometric relationship between triplets of identical visual words by cal-

culating an orthogonal vector relative to each point in the triplets of identical visual words and

calculating the histogram on the basis of the magnitude of these orthogonal vectors. The major

contributions of this paper are i) adding the discriminative global spatial information to the

BoVW model ii) being robust to geometric transformations such as rotation. Experimental

outcomes on standard benchmarks demonstrate remarkable gain in the classification accuracy

over the state-of-the-art methods.

The rest of the article is organized as follows: the proceeding section is about the literature

review. Section 3 provides an overview of the BoVW model and presents our proposed

approach to incorporate the global spatial information to the inverted index of BoVW model.

Section 4 provides a discussion about results on four benchmark datasets, and comparison

with the other state-of-the-art. The last section concludes the article and points towards the

future directions of research.

2 Related work

A major limitations of BoVW model is that it ignores spatial information [8, 25]. Despite of

this fact, BoVW exhibits high discriminative power and shown excellent results in image classi-

fication [14, 34, 35]. Other challenges faced by the BoVW representation are the lack of seman-

tic meaning and performance evaluation of BoVW-based systems, which are open areas of

research [36–39]. Numerous research studies demonstrated that the performance can be

improved by incorporating the missing spatial information [15, 40, 41]. The most notable

work in the context of spatial information is of Lazebnik et al. [15] (who proposed SPM). In

SPM, an image is divided into rectangular subregions and visual word statistics are aggregated

from each region. The final histogram is the concatenation of histograms extracted from each

region. To reduce the dimensions of feature vector extracted from SPM, [40, 41] proposed to

incorporate the spatial context at a lower level. Koniusz et al. [40] put forward Spatial Coordi-

nate Coding (SCC), to encode the spatial and angular information at descriptor level. Krapac

et al. [42] proposed a framework to derive a compact feature representation, that encodes the

spatial layout of visual words using a Gaussian Mixture Model (GMM). A similar approach

Fig 1. Representation of distribution of collinear points in images.

https://doi.org/10.1371/journal.pone.0198175.g001
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was proposed by SáNchez et al. [41] to include spatial information in image signatures on the

basis of average statistics. A significant benefit of these approaches when compared with SPM

is they do not incur an increase in the dimensions of image representation. Object Bank (OB)

is a high-level image representation that encodes the spatial and semantic information [43].

However OB approach suffers from drawback of high-dimensionality and various approaches

have been proposed in literature to reduce the dimensions and enhance the performance of

OB [43, 44]. To boost the performance of OB representation Zang et al. [44] proposed a thresh-

old value filter method. They used Matthew effect normalization method to simplify OB repre-

sentation and constructed more compact descriptors. They showed improved performance on

three real-world datasets, with substantial dimensionality reduction of image descriptors.

To prove the effectiveness of proposed research, besides methods concurrent to our

approach [18, 23–25], we have selected some recent state-of-the-art focussed on different

approaches as feature fusion [1, 2], intermediate feature representation [45], the use of Convo-

lutional Neural Networks (CNN) and deep learning techniques [46, 47] to improve the classifi-

cation performance. In [1], Zou et al. proposed local-global-fusion strategy (LGF), to create a

fusion of local and global image features. For this they first extracted local features by using

BoVW and SPM, in order to extract global features they employed multi-scale CLBP

(MS-CLBP). For feature representation they employed Kernel Collaborative Representation-

based Classification (KCRC). After the representation residuals are obtained from the two

types of features, the label is assigned based on the sum of the weighed residuals.

In another recent work, Bian et al. [2] proposed fusion of local and global descriptors to

enhance the classification performance. They enriched the feature representations by combin-

ing both global structures and local fine details of image scene. To extract global rotation-

invariant features they employed global saliency based multiscale, multiresolution and multi-

structure LBP, and local Codebookless Model (CLM) is used to represent local discriminative

features. They reported improved performance to their complementary as well as more com-

petitive state-of-the-art deep learning methods. Mekhalfi et al. proposed a novel scheme to

compactly represent images using a compressive sensing and multi-feature framework. Their

method achieved substantial performance gains results to the state-of-the-art methods on

land-use image dataset.

Recent works show the effectiveness of deep learning methods on scene classification [46,

48]. A major limitation of CNN based architectures is the complicated pre-training process for

fine-tuning parameters [2]. Zhang et al. [48] proposed a Gradient Boosting Random Convolu-

tional Neural Network (GBRCN) framework for image classification. They effectively com-

bined many deep neural networks to cerate a deep ensemble network for the first time. They

performed experiments on two challenging high-resolution datasets and provided accurate

results than the state-of-the-art methods. To accelerate learning of deep CNNs, Scott et al. [46]

proposed to use Transfer Learning (TL) in combination with fine-tuning and augmentation.

They evaluated the effectiveness of proposed approach on UC Merced dataset to achieved sig-

nificantly higher accuracies than the most outstanding methods. It is worth mentioning here,

that for these datasets CNN based approaches [47] are not an optimal choice, as they require

huge amounts of data (in millions) and time for training [24]. The BoVW model is a plug-n-

play method which can be adopted without any prior initialization or training [4].

3 Proposed methodology

This section is about an overview of BoVW model and introduce its basic notations, then

we will discuss the proposed Orthogonal Vector Histograms (OVH) representation and the

implementation details.

Image classification by addition of spatial information based on histograms of orthogonal vectors
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BoVW model

BoVW is analogous to the Bag-of-Words (BoW) used in textual retrieval systems [49]. The

BoW representation of a document is a normalized histogram that counts of the occurrences

of a word in a document. The resultant BoW representation is also termed as ‘bag’, as it keeps

only the count and does not retain the order of words in the document. Histogram intersection

is used to determine similarity. If the images are different, the result of their intersection is

small. In English language, there is a vocabulary of words but for images, we need to create our

own vocabulary. The words in images are little picture elements, just as document words, the

features represent the local areas of the image. In BoVW, an image Im is depicted as a set of

image descriptors as Eq (1)

Im ¼ fd1; d2; d3; ::::; dIg ð1Þ

where di is the color, shape, and I denotes total image descriptors.

As a result, numerous local descriptors are created from all the patches of each image for a

given dataset. To reduce the dimensions of resultant feature vectors, an unsupervised cluster-

ing technique k-means [49] is applied on the extracted descriptors to find cluster centers that

constitute the visual vocabulary

v ¼ fw1;w2;w3; ::::;wKg ð2Þ

where K is the predefined number of clusters or visual words an v is the constructed vocabu-

lary of code book.

So mapping of each descriptor to the nearest visual word is done according to the Eq (3)

wðdjÞ ¼ argmin
w2v

Distðw; djÞ ð3Þ

Here, w(dj) depicts the visual word assigned to jth descriptor and Dist (w,dj) signifies the dis-

tance between the descriptor dj and visual word w.

Clustering is required to reduce the high dimensional feature space to obtain a more com-

pact feature representation. Each image is hence represented by a collection of descriptors,

with each descriptor mapped to one visual word. In the conventional BoVW method [49], the

histogram is the final representation of the image which gives the distribution of visual words.

It does not have any order. The count of bins in histogram equals the number of visual words

in the dictionary (i.e. K). If each bin represents a visual word wi in voc

bini ¼ cardðDiÞ where Di ¼ fdj; j 2 1; ::::; n j wðdjÞ ¼ wig ð4Þ

Di is the set of all the descriptors that correspond to a particular visual word wi in an image.

Card(Di) is the cardinality which gives count of the elements of set Di. This is repeated for

every word in image to obtain the final representation. The histogram hence created does not

retain the spatial information of the interest points.

Orthogonal Vectors Histogram (OVH)

BoVW model assigns identical image patches to the same visual word to create the histogram

representation of images. Khan et al. [25] proposed to model global relationship between

visual words by using PIWs to describe images where a given pair corresponds to two identical

words. The angles made by the position of PIWs are computed with respect to x-axis to create

the PIWAH representation. Since the angles between PIWs are computed with respect to x-

axis, PIWAH is not invariant to rotation [23, 25]. To acquire rotation invariance Anwar et al.
[23] proposed to compute angles between TIWs. The angles hence computed between TIWs

Image classification by addition of spatial information based on histograms of orthogonal vectors
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are used to create the TIWAH representation. Though the approach of Anwar et al. [23] using

angles between identical visual word triplets achieves rotation invariance but loses fine infor-

mation regarding the relative position of points when they are collinear. As we can see in Fig 2

the position of b and d is different relative to a, but the angle at point a relative to b and d is

same.

It is obvious from Fig 2 that the angle at point a relative to b and d is same, despite the fact

that their relative positions are different with respect to point a. This results in loss of spatial

information and decreases the discriminative power of the model. We proposed a novel

approach to incorporate global spatial information by calculating an orthogonal vector relative

to each point in the triplets of identical visual words as shown in (Fig 3) and calculating the his-

togram on the basis of the magnitude of these orthogonal vectors.

If the points are collinear their relative angle will be the same but the magnitude of their

orthogonal vector will be different. Our approach adds the spatial information to the BoVW

model and hence increases the discriminative power of the model.

If the image is rotated by any degree the orthogonal vector between point triplets will

remain the same thereby achieving rotation invariance as can be seen in Fig 4.

Hence we define the set of all triplets (TW) of identical visual words related to a visual word

wi as:

TWi ¼ fða; b; cÞjðda; db; dcÞ 2 D3
i ; da 6¼ db 6¼ dcg ð5Þ

where a(a1, a2), b(b1, b2) and c(c1, c2) signify the spatial positions of the descriptors da, db and

dc respectively. The position of a descriptor is determined by coordinates of the top left pixel

of the relevant patch. As ith bin of histogram represents di, its value gives the frequency of

occurrence of word wi. The cardinality of TWi is bi C3 i.e. the number of possible combinations

between distinct vector triplets among bi elements.

The position vectors of b and c with respect to a are given by:

rab ¼ ðb1 � a1; b2 � a2Þ

rac ¼ ðc1 � a1; c2 � a2Þ

Fig 2. (a) Depicts the angle for descriptor da relative to db (b) the angle for descriptor da relative to descriptor dd.

https://doi.org/10.1371/journal.pone.0198175.g002
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Let Pbc
a denotes the vector at a orthogonal to rab and rac, then

Pbc
a ¼ rab � rac

¼

î ĵ

b1 � a1 b2 � a2

c1 � a1 c2 � a2

�
�
�
�
�
�
�

�
�
�
�
�
�
�

¼ ððb1 � a1Þðc2 � a2Þ; ðb2 � a2Þða1 � c1ÞÞ

The magnitude of Pbc
a is calculated as

jPbc
a j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ðb1 � a1Þðc2 � a2Þ�
2
þ ½ðb2 � a2Þða1 � c1Þ�

2

q
ð6Þ

The magnitude of these orthogonal vectors are scaled in the range of 0-1. The orthogonal vec-

tor histogram OVHi provides the spatial distribution for a particular visual word wi. To obtain

a global representation, we combined OVHi obtained from all the visual words in an image.

For this we used a bin replacement technique, to transform the BoVW for OVH representa-

tion. This is done by replacing each bin of BoVW frequency histogram with the OVHi histo-

gram corresponding to wi. To incorporate the spatial information by keeping the frequency

information intact, we normalized the sum of all bins of OVHi to the bin-size bi of the respec-

tive bin of BoVW histogram that is going to be replaced. The global representation of an

image, denoted by OVH is hence formulated as

OVH ¼ ða1OVH1; a2OVH2; :::::; aKOVHKÞ ð7Þ

where a1 ¼
bi

jjOVHi jj
and is termed as the coefficient of normalization. For a visual vocabulary of

size K, if the number of histogram bins is H, then the size of OVH is K × H.

Fig 3. (a) The orthogonal vector for descriptor da relative to db (b) the orthogonal vector for descriptor da relative to descriptor dd.

https://doi.org/10.1371/journal.pone.0198175.g003
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Implementation details

The block diagram of the proposed methodology is shown in Fig 5. For all datasets, we fol-

lowed the same sequence of steps to create histogram representations. To reduce the computa-

tional complexity, as a pre-processing step, the large images from datasets are resized to a

Fig 4. Figure depicts the rotation-invariance achieved between point triplets using the magnitude of orthogonal vectors.

https://doi.org/10.1371/journal.pone.0198175.g004
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standard size of 480 × 480 pixels. For feature extraction, all the images are converted to gray

scale and dense SIFT with step size of 8 is used for feature extraction. Then k-means clustering

is applied on these descriptors to generate visual vocabulary. Due to unsupervised nature of k-
means, the experiments are repeated 10 trials with random selection of training and test images

and mean values are reported in tables and graphs.

The size of visual vocabulary is an important parameter affecting the performance of sys-

tem. Increasing the size of visual vocabulary increases the performance and a larger vocabulary

size tends to overfit [50]. Experiments are conducted with vocabulary of different sizes in-

order to determine the best performance obtained from the proposed image representation.

To speed up computation, we set a threshold and a random selection is used to limit the num-

ber of words of the same type used for the creating triplet combinations. We used 5-bin OVH

representation for the results presented in section 4. Fig 6 presents the empirical justification

for the choice of optimal bins for histogram representation on two datasets used in our experi-

ments. We performed experiments for proposed research and TIWAH [23] following the

same experimental parameters.

For classification we have used Support Vector Machines (SVM) that belongs to supervised

learning methods [51]. Given positive and negative training images, the objective is to classify

a test image whether it contains the object class or not. SVM uses the kernel method to calcu-

late the dot product in the high dimensional feature space and acquires the ability to generate

non-linear decision boundaries. The kernel method makes it possible to use data with no obvi-

ous fixed dimensions. The histograms constructed by computing the magnitude between

orthogonal vectors are normalized and SVM Hellinger Kernel [52] is applied to the normalized

histograms. The SVM Hellinger kernel is selected because of its low computational cost and

Fig 5. Block diagram of proposed research based on OVH.

https://doi.org/10.1371/journal.pone.0198175.g005
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instead of computing the kernel values it explicitly computes the features map and the classifier

remains linear [6]. To determine the optimal value for the regularization parameter C, 10-fold

cross validation is applied on the training dataset. The one-against-one [53] approach is

applied and for k number of classes, k.(k-1)/2 classifiers are constructed to train the data using

two classes.

4 Experiments and results

This section provides details about the experiments that are conducted for the evaluation of

proposed image representations. To evaluate the effectiveness of proposed research, experi-

ments are conducted on standard datasets that are used extensively in the literature.

15-scene image dataset

The first dataset used in our experiments comprises of 15-scene categories. Initial 8 categories

are contributed by Oliva and Torralba [54], 5 classes are collected by Li and perona [34] and

the rest are introduced by Lazebnik [15]. Images are collected from different sources primarily

from personal photographs, the Internet and COREL collections. The total number of images

in his dataset are 4485 and average image size is 300 × 250 pixels, with 210-410 images per cat-

egory. It is a challenging dataset, as it comprises of a wide range of indoor and outdoor catego-

ries as can be seen in Fig 7.

For this dataset, we followed the same experimental procedure as mentioned in [15, 25]. To

ensure a fair comparison, the testing and training samples are chosen in accordance with the

state-of-the-art methods. The training set comprises of 100 randomly selected images and the

rest of the images are used for testing as the same number is elected by the papers that are used

for comparison.

We performed experiments with different sizes of visual vocabulary to obtain the optimal

size for accurate feature representations. The mean and standard deviation over 10 individual

runs are shown in Table 1. For PIWAH [25] the best mean average accuracy was reported for

a vocabulary size of 200. For our experiments, we obtained best performance for OVH and

TIWAH representation for a vocabulary size of 400. Fig 8 provides a graphical comparison

over vocabulary of different sizes (with 95% Confidence Interval (CI)).
Experimental results and comparisons show the robustness of the proposed approach using

15-scene image dataset. In Table 2 we provide a comparison of the proposed OVH representa-

tion with the state-of-the-art based on spatial context. The most notable contribution in the

Fig 6. Mean average classification accuracy as a function of bin size.

https://doi.org/10.1371/journal.pone.0198175.g006
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context of spatial information is of Lazebnik et al. [15]. Savarese and Liu [17, 18] are the poi-

neers of pairwise spatial histograms, in which all the possible combinations of visual words are

considered leading to N(N + 1)/2 histograms (where N denotes the number of visual words).

In [18], only distance divisions are considered, whereas [17] combines both angle and distance

information. Our work relates most closely to PIWAH [25] and TIWAH [23] as we have mod-

eled global relative geometric relationships between identical visual words. In PIWAH, only

relationships between identical visual words are considered resulting in N spatial histograms.

Anwar et al. [23] proposed to compute angle between triplets of identical visual words to

acquire rotation invariance. The experimental results show that our proposed method outper-

forms the state of the art methods in both accuracy and dimensions.

Here, it is important to note that for PIWAH [25] best performance i.e. 76% is obtained for

visual vocabulary of size 200, and the dimensions of the resultant feature vector are 1800. For

OVH we obtain the optimal performance on voc size of 400 i.e. 87.07% resulting in a 2000

dimensional feature vector. If performance of OVH is compared with PIWAH for voc size of

200, the dimensions of OVH are 1000 and accuracy is 86.55% (Table 1) which is still signifi-

cantly higher than the PIWAH representation. Khan et al. [25] incorporate the absolute spatial

information in PIWAH+, by combining the SPM and PIWAH and obtain a performance gain

of 6.5% with a 5000 dimensional feature vector. SPSad+ [24] enhanced the PIWAH representa-

tion by combining orientation, distance and SPM representation and obtained 83.7% on the

tradeoff of dimensionality, which increased upto 13200. SPSad
1800+ reduced the dimensions of

SPSad+ to a 1800 dimensional feature vector, followed by a subsequent reduction in accuracy

that drops by 0.7%.

Table 1. Classification accuracy comparison with PIWAH, TIWAH and proposed research.

Voc. Size PIWAH TIWAH OVH

μ σ μ σ μ σ
100 74.6% 0.6 85.77% 0.42 85.95% 0.49

200 76.0% 0.6 86.38% 0.48 86.55% 0.31

400 75.9% 0.6 86.73% 0.42 87.07% 0.33

https://doi.org/10.1371/journal.pone.0198175.t001

Fig 7. Example images with class label and total images per class, for each category of 15-scene image dataset [15].

https://doi.org/10.1371/journal.pone.0198175.g007
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Besides methods concurrent to our approach, we have also provided comparison with

some of the recent works focused to enhance classification accuracy. In [55], Song et al.
adopted a different approach to incorporate spatial context, i.e. by combining the semantic

and the spatial information to create the Extended Mutli-feature Spatial Context (EMFS) and

achieved 85.7% performance accuracy. Zou et al. [1] created a fusion of local (extracted by

combining BoVW with SPM) and global (extracted using multi-scale CLBP) features and

reported an accuracy of 85.8%. Another recent work [44] that combines the semantic and

spatial context, reducing the dimensions of Object Bank (OB) to 1/12 obtains an accuracy of

81.5% with 3717 dimensions. OVH clearly outperforms the methods concurrent to our

approach in both accuracy and dimensions.

The confusion matrix for 15-scene dataset is shown in Fig 9. The diagonal values show the

precision normalized percentages of each class.

The above comparisons clearly demonstrate that our approach outperforms the state-of-

the-art spatial methods, with relative global spatial information only and no additional dimen-

sion reduction steps required.

MSRC-v2 image dataset

The second dataset used in our experiments consists of 591 images classified into 23 categories.

Different subsets of these categories have been used in literature to evaluate a classification

Fig 8. Mean average accuracy as a function of vocabulary size using 15-scene image dataset.

https://doi.org/10.1371/journal.pone.0198175.g008

Table 2. Classification accuracy comparison of the proposed research with the state-of-the-art methods.

Algorithms Feature Dimensionality Accuracy

PIWAH [25] 1800 76%

SPM [15] 8400 81.4%

Zang et al. [44] 3717 81.5%

PIWAH+ [25] 5000 82.5%

SPSad+ [24] 13200 83.7%

EMFS [55] X 85.7%

LGF [1] X 85.8%

TIWAH 3600 86.73%

OVH 2000 87.07%

https://doi.org/10.1371/journal.pone.0198175.t002
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problem. For MSRC-v2 we have used a 15 category problem as in [17, 18, 24]. The training

and test sets are chosen in accordance with these works to ensure fair comparison. It is a chal-

lenging dataset as the objects exhibit intra-class variation in shape and size, in addition to par-

tial occlusion [17]. Example images from this dataset are shown in Fig 10.

Fig 9. Confusion matrix for the 15-scene image dataset.

https://doi.org/10.1371/journal.pone.0198175.g009

Fig 10. Example images with class label and total images per class, for each category of MSRC-v2 image dataset [18].

https://doi.org/10.1371/journal.pone.0198175.g010
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To obtain the optimal size for feature representation, experiments are conducted with dif-

ferent sizes of visual vocabulary based on proposed OVH and TIWAH [23]. For PIWAH [25]

the best mean average accuracy was reported for a vocabulary size of 400. The dimensions of

resultant feature vector for PIWAH are 3600. For our experiments, we also obtained the best

performance for OVH and TIWAH representation, for a vocabulary size of 400 as can be seen

in Fig 11. The dimensions of TIWAH feature vector are 3600 and for OVH 2000 respectively.

The first part of the Fig 11 demonstrates the classification accuracy comparison between

TIWAH and OVH, and the second part shows the dimensions of the resultant feature vector

obtained from both representations. Though for MSRC-v2 dataset, the classification accuracy

performance obtained from both methods is parallel, the dimensions of TIWAH obtained for

the best performance are 1.8 times more as compared to OVH.

Table 3 provides a comparison of OVH to the methods that relate closely to our approach.

Here, we can see that our method outperforms the related methods in terms of accuracy and

dimensions. Savarese et al. [18] and Liu et al. [17] are the most notable contributions to model

spatial relationships between visual words. In order to build spatial histograms they rely on

new features comprising of pairs (or higher number) of words having a specific relative posi-

tion. The approach of Savarese et al. results in 81.1% accuracy, and Liu et al. achieved 83.1%

accuracy. Our method provides the best classification results for this dataset. Besides this, the

proposed approach holds different other advantages compared to existing methods. Liu et al.
[17] used integrated feature selection and spatial feature extraction technique to boost the per-

formance. However, as spatial information extraction is performed as a part of learning step,

the modification in the training set would lead to feature re-computation thus hence making

it difficult to generalize. Unlike Savarese et al. [18], OVH does not require a 2nd-order feature

quantization step.

Fig 11. Performance comparison between TIWAH and OVH for MSRC-v2 image dataset.

https://doi.org/10.1371/journal.pone.0198175.g011

Table 3. Classification accuracy comparison of the proposed research with the state-of-the-art methods.

Algorithms Dimensions Accuracy

Saverse et al. [18] X 81.1%

PIWAH [25] 3600 82.0%

Liu et al. [17] 1200 83.1%

SPSad [24] 18000 83.5%

TIWAH 3600 100%

OVH 2000 100%

https://doi.org/10.1371/journal.pone.0198175.t003
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The soft pairwise similarity angle distance histogram (SPSad) [24] encodes spatial informa-

tion of pairwise similar patches into the BoVW representation. SPSad results in 83.5% accuracy

with 18000 dimensional feature vector. Compared to SPSad our proposed representation pro-

vides 16.5% higher accuracy, with a low dimensional feature vector. The performance of

TIWAH in this method is parallel to our method but its dimensions are almost 1.8 times more

than OVH. Our proposed method clearly outperforms the state-of-the-art concurrent meth-

ods, by modeling global geometric relationship between visual words.

The confusion matrix calculated from 10 runs of proposed OVH for its highest perfor-

mance on 400 voc size is shown in Fig 12. It shows the robustness of proposed approach, that

significantly enhances the performance by accurately classifying all images into their respective

categories.

UC Merced land-use (UCM) image dataset

The third dataset used in our experiments is created by Yang and Newsam [56] comprising

of images downloaded from the United States Geological Survey (USGS) National map. It

comprises of 21 land-use classes as shown in Fig 13. Each class contains 100 images of size

256 × 256 pixels. This benchmark dataset has a large geographical scale. Following the experi-

mental setup in [1, 2, 56] we randomly selected 80 images from each class as training and the

remaining for testing.

Experiments conducted on 15-scene and MSRC-v2 datasets clearly demonstrate that our

method outperforms methods that do the same (incorporate spatial context) to our approach,

based on spatial information. Here, to prove the effectiveness of our approach, comparison is

performed with the state-of-the-art ranging from feature fusion [1, 2], intermediate feature

representation [45], the application of CNN and deep learning techniques [46, 47].

Fig 12. Confusion matrix for the MSRC-v2 image dataset.

https://doi.org/10.1371/journal.pone.0198175.g012
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To obtain the optimal performance, the accuracy of OVH for different vocabulary sizes is

shown in Fig 14. Even at vocabulary size of 50 our proposed method shows excellent perfor-

mance with dimensions as low as 250. In-order to provide fair comparison with state-of-the-

art we have used the same training and test ratio as in related works. It will be interesting to

Fig 13. Example images with class label and total images per class, for each category of UCM image dataset [56].

https://doi.org/10.1371/journal.pone.0198175.g013

Fig 14. Mean average classification accuracy as a function of vocabulary size using UCM image dataset.

https://doi.org/10.1371/journal.pone.0198175.g014
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conduct experiments with different training and test ratios and analyze the performance in

those scenarios.

As UCM is a widely used dataset [1, 45, 57], a few noteworthy recent results are reported in

Table 4. In CCM-BOVW [31], the spatial information is incorporated by using a concentric-

circle based approach, in addition to multiresolution images, they used multiple features i.e.

SIFT, color moments and LBP to enhance feature representation. Their approach appear good

only for the classes that are sensitive to orientations, as airplane, baseball diamond, golf course

and storage tanks. Whereas, CCM-BOVW did not have a significant impact on categories, that

have simple pattern and do not suffer from orientations as forest, river, agricultural and chap-

paral. Our method archives 100% accuracy for this dataset by incorporating the relative spatial

information in a rotation-invariant manner.

LGF [1], salM3LBP-CLM [2] and LGFBOVW [58] create a fusion of local and global fea-

tures for high spatial resolution (HSR) remote sensing imagery. OVH outperforms the above

methods by 4.52%, 4.25% and 3.12% classification accuracy respectively. Besides this, LGF [1]

also incorporates the spatial information by including SPM in implementation. Though dis-

criminative features are crucial for image classification and have a direct impact on perfor-

mance, our approach to incorporate the spatial context by modeling relative relationship

among triplets of identical visual words provides better results than the more recent feature-

fusion based approaches.

The most significant results on UCM dataset, contributed by [46, 47], are 98.5% and

99.33% respectively. To the best of our knowledge, [47] provided the best classification for the

UCM dataset. Prior to their work, the Penatti [57] achieved highest accuracy 93.4% with Caffe-

net, and 99.43% by combining Caffenet with OverFeat using SVM. Our proposed approach

provides challenging results to the more recent highest performing deep neural networks

based methods. A known tradeoff of deep CNN based architectures is that they typically con-

tains millions of parameters for classification task and are difficult to train with limited train-

ing data. Despite of simple implementation, the proposed representation provides remarkable

results for high resolution scene classification.

In-order to demonstrate the sustainable performance of the proposed image representa-

tion, we have performed class-wise comparison with the state-of-the-art methods [1] shown

in Fig 15. Experimental results using LGF show that the major confusion occurs between

class overpass and intersection, and class storage and buildings. Our method successfully

classifies all images to their respective categories thereby achieving 100% classification

accuracy.

Table 4. Classification accuracy comparison of the proposed research with the state-of-the-art methods.

Algorithms Accuracy

SPM [15] 82.3% ± 1.48% [58]

CCM-BOVW [31] 86.64% ± 0.81%

MS-CLBP1 [59] 90.6% ± 1.4%

SOS [45] 94.33%

LGF [1] 95.48%

salM3LBP-CLM [2] 95.75% ± 0.80%

LGFBOVW [58] 96.88% ± 1.32%

ResNet50 [46] 98.5%

Evolved Sugeno [47] 99.33%

OVH 100%

https://doi.org/10.1371/journal.pone.0198175.t004
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Fig 16 shows the average confusion matrix for UCM image dataset. It is clearly evident

from the confusion matrix, that all the UCM classes are correctly classified achieving highest

accuracy 100%.

Performance on 19-class satellite scene image dataset

The fourth dataset [1, 60] used in our experiments comprises of 19 high-resolution satellite

scene categories as can be seen in Fig 17. This dataset focuses on images with a large geograph-

ical scale and contains atleast 50 images/class, size 600 × 600 pixels. Following the same experi-

mental setup as in [1, 2], 30 images are chosen randomly from each class for training and the

rest for testing.

The performance of OVH, against different vocabulary sizes is shown in Fig 18. We

obtained the optimal performance for a vocabulary of size 600, resulting in a 3000 dimen-

sional histogram.

Table 5 provides a comparison of the proposed OVH to the state-of-the-art. It is important

to mention here that we have not used BoVW, SPM [15] and related pioneer works in this

sub-section for comparison, as our aim here is to provide a comparison with the recent out-

standing reported works. The effectiveness of proposed approach to the concurrent methods

has been shown in the above comparisons. It can be seen from Table 5 that our method shows

competitive and reliable performance to the more recent state-of-the-art.

MS-CLBP1 [59] is a multi-scale mutiresolution descriptor to capture dominant texture

features applied for land-use scene classification. OVH provides 5.05% higher accuracy indi-

cating its superiority for land-use scene classification. As mentioned earlier LGF [1] and

salM3LBP-CLM [2] are local-global feature fusion methods. Compared to these method our

approach provides 3.19% and 2.07% higher accuracy respectively. Our method provides 0.35%

high accuracy compared to more recent deep network based GoogLeNet [46] method. The

class-wise comparison between LGF [1] and OVH is shown in Fig 19, that allows the direct

visualization of class-wise performance comparison between different methods.

Fig 15. Class-wise comparison between LGF [1] and OVH for UCM image dataset.

https://doi.org/10.1371/journal.pone.0198175.g015
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The confusion matrix for 19-class satellite scene image dataset is shown in Fig 20. Our pro-

posed method to incorporate global spatial context, despite of its simple approach, shows

remarkable performance compared to the state-of-the-art methods.

Discussion on rotation-invariance

The OVH representation is invariant to rotation transformation. To demonstrate the effective-

ness of proposed approach the analysis is performed on 15-scene and UCM image datasets.

The selection of these datasets is made for two reasons. Firstly, of the four datasets used in our

experiments these are larger in size. Secondly, the selected datasets have been in used literature

to for rotation-invariance experiments, and hence a fair comparison is possible. Following the

approach of Zhao et al. [31] and Karmakar et al. [61], a rotation dataset is created from the two

datasets, by randomly rotating images. Example images from the rotation datasets are shown

in Fig 21.

For 15-scene rotated image dataset the training and test ratio is in-consistent with one used

for CCM-BOVW [31]. It is important note here that for classification accuracy comparison

of UCM image dataset, the training and test images ratio is 0.8: 0.2 as in related works [1, 2].

Whereas for rotation-invariance experiments with rotated UCM dataset, the training test ratio

of Zhao et al. [31] is followed i.e. 0.5: 0.5.

The experiments for rotation-invariance are performed for the optimal vocabulary size

obtained from the classification experiments i.e. for 15-scene dataset at 400 (Fig 8) and 50 for

UCM (Fig 14). Using the proposed OVH the mean accuracy obtained for 15-scene dataset is

84.52% and the dimensions of resultant feature vector are 2000. Karmakar et al. [61] proposed

Fig 16. Confusion matrix for the UCM image dataset.

https://doi.org/10.1371/journal.pone.0198175.g016
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rotation-invariant SPM for image classification, and reported mean accuracy 83.4% with a

4200 dimensional feature vector. Our method provides 1.12% higher accuracy with dimen-

sions less than half as compared to their work [61]. For our experiments we have used dense

SIFT for feature extraction. It would be interesting to enhance the OVH feature representation

Fig 17. Example images with class label and total images per class, for each category of 19-class satellite scene

image dataset [60].

https://doi.org/10.1371/journal.pone.0198175.g017

Fig 18. Mean average classification accuracy as a function of vocabulary size using 19-class satellite scene image

dataset.

https://doi.org/10.1371/journal.pone.0198175.g018
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by using a fusion of different techniques particulary with descriptors that could capture some

rotation-invariance cues.

For the second rotated dataset, Zhao et al. [31] reported classification accuracy 86.64%,

which exceeds the best accuracy reported by the dataset creator [56] by 5.45%. Our proposed

method results in 100% classification accuracy with a 250 dimensional feature vector. OVH

provides 13.36% higher accuracy compared to CCM-BOVW [31] method, which indicates

that the proposed representation is very suitable to solve the land-use scene classification prob-

lem. CCM-BOVW didnot have a significant impact on the performance of classes that are rela-

tively simple and do not suffer from orientations. Our method is equally beneficial for simple

classes and also successfully classifies complex classes that are easily influenced by orientation

e.g. storage tanks, baseball diamond, airplane, and golf course. To sum up, the proposed image

representation is proved to be insensitive to the rotation of scenes.

5 Conclusion and future directions

In this paper, we proposed a novel low-dimensional image representation that incorporates

the spatial information to the inverted index of BoVW model. The spatial information is

added by calculating the global relative spatial orientation of visual words in a rotation invari-

ant manner. This calculation provides the unique information regarding the relative position

of visual words when they are collinear. We validated the proposed image representation

by using four standard image benchmarks. The experimental results and quantitative

Table 5. Classification accuracy comparison of the proposed research with the state-of-the-art methods.

Algorithms Accuracy

MS-CLBP1 [59] 93.4% ± 1.1%

LGF [1] 95.26%

salM3LBP-CLM [2] 96.38% ± 0.82%

GoogLeNet [46] 98.1%

OVH 98.45% ± 0.6%

https://doi.org/10.1371/journal.pone.0198175.t005

Fig 19. Class-wise comparison between LGF [1] and OVH for 19-class satellite scene image dataset.

https://doi.org/10.1371/journal.pone.0198175.g019
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comparisons demonstrate that our approach successfully incorporates relative global spatial

information into the BoVW model. The proposed approach outperforms all other concurrent

local and global histogram based methods and provides competitive performance as compared

with more recent state-of-the-art approaches.

In future, we would like to extend this work to incorporate absolute spatial information,

as the current trend shows combining these two in final representation is significant. For this

we will enrich our representation by combining it with SPM or triangular histograms. As our

method has shown excellent results on four image benchmarks, in future we would explore

more challenging and large-scale datasets. Moreover, we intend to explore some new fuzzy

Fig 20. Confusion matrix for the 19-class satellite scene image dataset.

https://doi.org/10.1371/journal.pone.0198175.g020

Fig 21. Example images from rotation datasets.

https://doi.org/10.1371/journal.pone.0198175.g021
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encoding techniques with our triplet spatial histograms. To enrich our image representation

with other cues like color and shape is also a promising direction for future research.
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