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Methodology
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ABSTRACT

The purpose of this paper is to apply the Box±Jenkins methodology to
ARIMA models and determine the reasons why in empirical tests it is
found that the post-sample forecasting the accuracy of such models is
generally worse than much simpler time series methods. The paper con-
cludes that the major problem is the way of making the series stationary in
its mean (i.e. the method of di�erencing) that has been proposed by Box
and Jenkins. If alternative approaches are utilized to remove and extrapo-
late the trend in the data, ARMA models outperform the models selected
through Box±Jenkins methodology. In addition, it is shown that using
ARMA models to seasonally adjusted data slightly improves post-sample
accuracies while simplifying the use of ARMA models. It is also con®rmed
that transformations slightly improve post-sample forecasting accuracy,
particularly for long forecasting horizons. Finally, it is demonstrated
that AR(1), AR(2) and ARMA(1,1) models can produce more accurate
post-sample forecasts than those found through the application of Box±
Jenkins methodology. # 1997 by John Wiley & Sons, Ltd.

J. forecast. 16: 147±163, 1997

No. of Figures: 12. No. of Tables: 0. No. of References: 44.

KEYWORDS time-series forecasting; ARMA models; Box±Jenkins,
empirical studies; M-Competition

AutoRegressive (AR) models were ®rst introduced by Yule in 1926. They were subsequently
supplemented by Slutsky who in 1937 presented Moving Average (MA) schemes. It was Wold
(1938), however, who combined both AR and MA schemes and showed that ARMA processes
can be used tomodel a large class of stationary time series as long as the appropriate order of p, the
number of AR terms, and q, the number of MA terms, was appropriately speci®ed. This means
that a general series xt can be modelled as a combination of past xt values and/or past et errors, or

xt � f1xtÿ1 � f2xtÿ2 � � � � � fpxtÿp � et ÿ y1etÿ1 ÿ y2etÿ2 ÿ � � � ÿ yqetÿq �1�

Using equation (1) for modelling real-life time series requires four steps. First the original series,
xt, must be transformed to become stationary around its mean and its variance. Second, the
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appropriate order of p and q must be speci®ed. Third, the value of the parameters f1;f2; . . . ;fp

and/or y1; y2; . . . ; yq must be estimated using some non-linear optimization procedure that
minimizes the sum of square errors or some other appropriate loss function. Finally, practical
ways of modelling seasonal series must be envisioned and the appropriate order of such models
speci®ed.

The utilization of the theoretical results suggested by Wold, expressed by equation (1), to
model real-life series did not become possible until the mid-1960s when computers, capable of
performing the required calculations to optimize the parameters of equation (1), became
available and economical. Box and Jenkins (1976, original edition 1970) popularized the use of
ARMAmodels through the following: (1) providing guidelines for making the series stationary in
both its mean and variance, (2) suggesting the use of autocorrelations and partial autocorrelation
coe�cients for determining appropriate values of p and q (and their seasonal equivalent P and Q
when the series exhibited seasonality), (3) providing a set of computer programs to help users
identify appropriate values for p and q, as well as P and Q, and estimate the parameters involved
and (4) once the parameters of the model were estimated, a diagnostic check was proposed to
determine whether or not the residuals, et, were white noise, in which case the order of the model
was considered ®nal (otherwise another model was determined using (2) and steps (3) and (4)
were repeated). If the diagnostic check showed random residuals then the model developed was
used for forecasting or control purposes assuming, of course, constancy, that is, the order of the
model and its non-stationary behaviour, if any, would remain the same during the forecasting, or
control, phase.

The approach proposed by Box and Jenkins came to be known as the Box±Jenkins method-
ology to ARIMA models, where the letter `I', between AR and MA, stood for the `Integrated'
and re¯ected the need for di�erencing to make the series stationary. ARIMA models and the
Box±Jenkins methodology became highly popular in the 1970s among academics, in particular
when it was shown through empirical studies (Cooper, 1972; Nelson, 1972; Elliot, 1973;
Narasimham et al., 1974; McWhorter, 1975; for a survey see Armstrong, 1978) that they could
outperform the large and complex econometric models, popular at that time, in a variety of
situations.

EMPIRICAL EVIDENCE

The popularity of the Box±Jenkins methodology to ARIMA models was shaken when empirical
studies (Gro�, 1973; Geurts and Ibrahim, 1975; Makridakis and Hibon, 1979; Makridakis et al.,
1982, 1993; Huss, 1985; Fildes et al., 1997), using real data, showed that simple methods were
equally or more accurate than Box±Jenkins when post-sample comparisons were made. Today,
after many debates, it is accepted by a large number of researchers that in empirical tests Box±
Jenkins is not an accurate method for post-sample time-series forecasting, at least in the domains
of business and economic applications where the level of randomness is high and where
constancy of pattern, or relationships, cannot be assured.

The purpose of this paper is to examine the post-sample forecasting accuracy of ARIMA
models in order to determine the contribution to such accuracy of each of its elements
(i.e. seasonality, stationarity, the order of the ARMA model, and the necessity that the residuals
of the ARMA model must be random). It is concluded that the major problem with the Box±
Jenkins methodology is the way that the series are made stationary in their mean. When
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alternative ways of dealing with and extrapolating the trend are provided, ARMA models are
slightly more accurate than the corresponding time-series methods that extrapolate the trend in
the time series.

THE STEPS (ELEMENTS) OF THE BOX±JENKINS METHODOLOGY

Figure 1 presents the four steps of the Box±Jenkins methodology. This section examines each of
these steps and discusses its possible contribution to post-sample forecasting accuracy.

Stationarity
Before equation (1) can be used the series should be stationary in its mean and variance. The
Box±Jenkins methodology suggests short and seasonal (long) di�erencing to achieve stationarity
in the mean, and logarithmic or power transformation to achieve stationarity in the variance. The
value of both di�erencing and transformations have been questioned. Pierce (1977) argued that
di�erencing is not an appropriate way of making the data stationary and instead he proposed
linear detrending. Nelson and Plosser (1982) argued that some series could be better made
stationary through di�erencing and others through linear detrending. Others (Parzen, 1982;
Newton and Parzen, 1984; Meese and Geweke, 1984) have used a pre-®lter consisting of a long-
memory AR model to capture possible non-stationarity in the series before using a regular
ARMA model.

Box and Jenkins suggest logarithmic or power transformations to achieve stationarity in the
variance. The value of such transformations to improve post-sample forecasting accuracy has also
been debated and no agreement has been reached as to whether or not transformations are helpful
(Chat®eld and Prothero, 1973). At the same time, it is clear that transformations require personal
judgement and the possibility of making errors, even when utilized by high-level academic experts

Figure 1. Schematic representation of the Box±Jenkins methodology. (Source: Makridakis et al., 1983)
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(see comments on the paper by Chat®eld and Prothero, 1973). At the empirical level there is also
no evidence that logarithmic or power transformations improve post-sample forecasting accuracy
(Granger and Nelson, 1978; Makridakis and Hibon, 1979; Meese and Geweke, 1984).

Seasonality
In case the series are seasonal, the Box±Jenkins methodology proposes multiplicative seasonal
models coupled with long-term di�erencing, if necessary, to achieve stationarity in the mean. The
di�culty with such an approach is that there is practically never enough data available to
determine the appropriate level of the seasonal ARMA model with any reasonable degree of
con®dence. Users therefore proceed through trial and error in both identifying an appropriate
seasonal model and in selecting the correct long-term (seasonal) di�erencing. In addition,
seasonality requires more data to estimate the appropriate model parameters. There has appa-
rently been no empirical work to test whether or not deseasonalizing the data ®rst, using a
decomposition procedure (a suggestion made by Durbin, 1979), and subsequently using the
Box±Jenkins method on the seasonally adjusted data improves post-sample forecasting accuracy.

Order of ARMA model
The order of the ARMA model is found by examining the autocorrelations and partial
autocorrelations of the stationary series. Box and Jenkins (1976) provided both a theoretical
framework and practical rules for determining appropriate values for p and q as well as their
seasonal counterparts P andQ. The possible di�culty is that often more than one model could be
considered, requiring the user to choose one of them without any knowledge of the implications
of his or her choice on post-sample forecasting accuracy since, according to the Box±Jenkins
methodology, any model which results in random residuals is an appropriate one. Box and
Jenkins do recommend the principle of parsimony meaning that a simpler (having fewer
parameters) model should be selected in case more than one model is possible, but there has been
very little systematic work to determine if this suggestion results in improvements in post-sample
forecasting accuracy.

Estimating the model's parameters
This part of the Box±Jenkins methodology is the most straightforward one. The non-linear
optimization procedure, based on the method of steepest descent (Marquardt, 1963), is used to
estimate the parameter values of p and/or q (and their seasonal equivalent P and/or Q). Apart
from occasional problems when there is no convergence (in which case another model is used) the
estimation provides no special di�culties except for its inability to guarantee a global optimum (a
common problem of all non-linear algorithms). The estimation is completely automated
requiring no judgemental inputs, and therefore testing, as all computer programs use the same
algorithm in applying the Marquardt optimization procedure.

Diagnostic checks
Once an appropriate model had been chosen and its parameters estimated, the Box±Jenkins
methodology required examining the residuals of the actual values minus those estimated
through the model. If such residuals are random, it is assumed that the model is appropriate.
If not, another model is considered, its parameters estimated, and its residuals checked for
randomness. In practically all instances a model could be found to result in random residuals.
Several tests (e.g. Box and Pierce, 1970) have been suggested to help users determine if overall the

J. forecast. 16: 147±163, 1997 # 1997 by John Wiley & Sons, Ltd.

150 Journal of Forecasting Vol. 16, Iss. No. 3



residuals are indeed random. Although it is a standard statistical procedure not to use models
whose residuals are not random, it might be interesting to test the consequences of lack of
residual randomness on post-sample forecasting accuracy.

POST-SAMPLE FORECASTING ACCURACY: PERSONALIZED
VERSUS AUTOMATIC BOX±JENKINS

The Makridakis and Hibon (1979) study, the M-Competition (Makridakis et al., 1982), the
M2-Competition (1993) as well as many other empirical studies (Schnaars, 1986; Koehler and
Murphree, 1988; Geurts and Kelly, 1986; Watson et al., 1987; Collopy and Armstrong, 1992)
have demonstrated that simple methods such as exponential smoothing outperform, on average,
the Box±Jenkins methodology to ARMA models. Figures 2(a), (b) and (c) show the MAPE
(Mean Absolute Percentage Errors), for various forecasting horizons, of Naive 2 (a deseason-
alized random walk model), Single exponential smoothing (after the data have been deseasonal-
ized, if necessary, and the forecasts subsequently reseasonalized) as well as those of the
Box±Jenkins methodology found in the M2-Competition (Makridakis et al., 1993), the
M-Competition (Makridakis et al., 1982), and the Makridakis and Hibon (1979) study. The
results indicate that single smoothing outperformed `Box±Jenkins' overall and in most fore-
casting horizons, while Naive 2 also does better than `Box±Jenkins', although by a lesser
amount. The results of Figure 2 are surprising since it has been demonstrated that single expo-
nential smoothing is a special case of ARMA models (Cogger, 1974; Gardner and McKenzie,
1985). Moreover, it makes little sense that Naive 2, which simply uses the latest available value,
taking seasonality into account, does so well in comparison to the Box±Jenkins methodology.

In the M-Competition (Makridakis et al., 1982) the Box±Jenkins method was run on a subset
of 111 (one out of every nine) series from the total of the 1001 series utilized. The reason was that
the method required personal judgement, making it impractical to use all 1001 series as the expert
analyst had to model each series individually, following the various steps described in the
previous section, and spending, on average, about one hour before a model could be con®rmed as
appropriate for forecasting purposes (see Andersen and Weiss, 1984).

Since the M-Competition was completed, several empirical studies have shown that automatic
Box±Jenkins approaches (Hill and Fildes, 1984; Libert, 1983; Texter and Ord, 1989) performed
about the same or better in terms of post-sample accuracy as the personalized approach followed
by Andersen and Weiss (1984). Figure 3 shows the results of a speci®c automatic Box±Jenkins
program (Stellwagen and Goodrich, 1991) together with that of the personalized approach
utilized by Andersen and Weiss in the M-Competition. Figure 3 illustrates that for the 111 series
used in the comparison the post-sample accuracies of the automatic and personalized approaches
are about the same. We could, therefore, use an automatic Box±Jenkins version to perform our
comparisons using all the 1001 series of the M-Competition.

ATTRIBUTING THE DIFFERENCES IN POST-SAMPLE
FORECASTING ACCURACIES

Since we found no substantive di�erences between the personalized and automatic versions of
Box±Jenkins (see Figure 3), we have utilized all the 1001 series of the M-Competition using an

# 1997 by John Wiley & Sons, Ltd. J. forecast. 16: 147±163, 1997

S. Makridakis and M. Hibon ARMA Models 151



automatic Box±Jenkins procedure (Stellwagen and Goodrich, 1991). Such a large sample of 1001
series allow us to attribute more reliably the di�erences in post-sample forecasting accuracy to the
various elements (steps) of the Box±Jenkins methodology.

Figure 2. The post-sample forecasting accuracy of Box±Jenkins, Naive 2, and single exponential
smoothing. (a) M2-Competition; (b) M-Competition; (c) Makridakis and Hibon study
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DESEASONALIZING THE SERIES

In the discussion of the Makridakis and Hibon (1979) paper it was suggested (Durbin, 1979) that
the Box±Jenkins methodology should also be applied to the seasonally adjusted data to
determine the e�ect of seasonality. This suggestion is being tested in this study.

Xt, the original data, can be deseasonalized by dividing it by the seasonal index, Sj, computed
through the classical decomposition method (Makridakis et al., 1983), or

X 0t � Xt=Sj �2�

where Sj is the seasonal index corresponding to the jth month, if the data are monthly, or the jth
season if quarterly. If the data are not seasonal, all indices are set to equal 1.
Once the forecasts have been computed using the automatic Box±Jenkins program, they can

be reseasonalized by multiplying them by the corresponding seasonal index, or

X̂t � X̂ 0tSj

Figure 4 shows the MAPE of the original and deseasonalized versions of the automatic
Box±Jenkins using all 1001 series of the M-Competition. Using ARIMA models on the
deseasonalized data results in more accurate post-sample forecasts consistently, although the
di�erences between the two approaches are small and not statistically signi®cant. As it is easier
and much simpler to apply ARIMA models to the deseasonalized series, this study suggests that
at least for the 1001 series of the M-Competition it is preferable to use ARIMA models to
seasonally adjusted data.

Figure 3. Box±Jenkins: mean absolute percentage error (MAPE): automatic versus personalized
(M-Competition: 111 series)
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LOG OR POWER TRANSFORMATIONS

Figure 5 shows the MAPEs when log or power transformations were employed, when necessary,
to achieve stationarity in the variance of the original data and the seasonally adjusted data. There
is a very small improvement when logarithmic or power transformations are applied to the raw

Figure 4. MAPE: original versus seasonally adjusted data

Figure 5. MAPE: original, deseasonalized and transformed data
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data, but the di�erences are not statistically signi®cant except for horizon 18. However, the
di�erences are consistent and increase as the forecasting horizon becomes longer. This ®nding is
not in agreement with previous ones which have concluded that power or log transformations do
not improve at all post-sample forecasting accuracy. As transformations improve forecasting
accuracy it must be determined whether the extra work required to make these transformations
justi®es the small improvements found, and whether or not such statistically insigni®cant
improvements (except for horizon 18) will be also found with other series than those of the
M-Competition.

TRANSFORMATIONS FOR ACHIEVING STATIONARITY IN THE MEAN

To the approach of di�erencing suggested by Box and Jenkins (1976) for achieving stationarity in
the mean there are several alternatives employing various ways to remove the trend in the data.
The trend, Tt, can be modelled as:

Tt � f �t� �3�
where t � 1; 2; 3; . . . ; n. In the case of a linear trend equation (3) becomes

Tt � a � bt �4�
where a and b are sample estimates of the linear regression coe�cients a and b in

Tt � a � bt � ut

where ut is an independent, normally distributed error term with zero mean and constant
variance. Alternatively, other types of trends can be assumed, or various pre-®lters can be applied
for removing the trend.

Whatever the approach being followed, Tt can be computed and subsequently used to achieve
stationarity assuming an additive

xt � Xt ÿ T̂ t �5�
or multiplicative trend

xt � Xt

T̂ t

�6�

Figure 6 shows the forecasts of the data made stationary through di�erencing (the approach
suggested by Box±Jenkins) and that through linear detrending using expression (4). Figure 6
shows that the linear trend is slightly worse, in terms of post-sample forecasting accuracy, for
short forecasting horizons and a little better for longer ones than the method of the ®rst
di�erences. The results of the linear trend improve for forecasting horizons 15 to 18 (see Figure 7),
although the di�erences are small and for most horizons non-statistically signi®cant. This ®nding
suggests that the two approaches produce equivalent results with an improvement of di�erencing
for short forecasting horizons and the opposite holding true for long ones (see Figure 7). This
makes sense as di�erencing better captures short-term trends and linear regression long-term
ones.
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DAMPENING THE TREND

In reality few trends increase or decrease consistently making di�erencing and linear extra-
polation not the most accurate ways of predicting their continuation. For this reason the
forecasting literature recommends dampening the extrapolation of trends as a function of their

Figure 6. MAPE: achieving stationarity; linear trend versus di�erencing

Figure 7. Percentage improvement of linear trend versus di�erencing
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randomness (see Gardner and McKenzie, 1985). In this study this dampening is achieved in the
following four ways:

(1) Damped exponential trend:

T 0t� l � St

Xl
i�1

fiT 0t

l � 1; 2; 3; . . . ;m

where St � aXt � �1 ÿ a��Stÿ1 � T 0tÿ1�f and T 0t � b�St ÿ Stÿ1� � �1 ÿ b�T 0tÿ1f and where a,
b and f are smoothing parameters found by minimizing the sum of the square errors between the
actual values and those predicted by the model forecasts. This method of damped trend has been
proposed by Gardner and McKenzie (1985).

(2) Horizontal extrapolation of the trend through single exponential smoothing:

T 0tÿ l � aXt � �1 ÿ a�T 0t

l � 1; 2; 3; . . . ;m

where a is a smoothing parameter found by minimizing the sum of square errors. The method of
single exponential smoothing has been proposed by Brown (1959) and is widely used by business
®rms and the military.

(3) The AR(1) extrapolation of the linear trend: Instead of extrapolations the linear trend of
expression (4) as

T̂ t� l � a � b�n � l� �7�
where l � 1; 2; 3; . . . ;m we can instead use a pre-®lter of the form,

T̂ t� l � a � b�n � l�fl �8�
where f is the AR(1) parameter calculated from the available data. As the value of f is smaller
than 1, the trend in expression (8) is dampened depending upon the value of the autoregressive
coe�cient f.

(4) The AR(1) extrapolation of the trend found through di�erencing: The trend of the latest
di�erencing can be damped by multiplying it by fl where f is the AR(1) parameter calculated
from the available data. In such a case the trend is damped by the exponent l since f is smaller
than 1 in absolute value:

T̂ 0t� l � fl T̂ t� lÿ1 �9�

Figure 8 shows the results of the four methods of dampening the trend versus the method of
di�erencing advocated by Box and Jenkins and the linear trend suggested by Pierce (1977). All
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four ways of damped trend outperform the method of di�erencing consistently and in all but a
few exceptions in Figure 8(d) that of the linear trend too. This ®nding suggests that the approach
of achieving stationarity in the mean is crucial and that neither the method of di�erencing nor
that of linear trend are the most accurate ways for doing so. Instead more e�ective ways of
extrapolating the trend must be found through either dampening it or other alternatives using
pre-®lters.

This ®nding suggests that the key to more accurate post-sample predictions is the `I' of the
Box±Jenkins methodology to ARIMA models. As statistical theory requires stationarity for
applying ARMA models it cannot be blamed for the poor performance in terms of accuracy of
models using data which are not stationary. Once the trend in ARMA models has been
extrapolated in the same way as that of the more accurate of time-series methods, then their post-
sample accuracy is superior to those methods, although by a small amount.

USING A RESTRICTED CLASS OF ARMA MODELS

By deseasonalizing the data ®rst we can restrict the class of models being used to ®ve major ones:
AR(1), AR(2), MA(1), MA(2) and ARMA(1,1). An alternative to Box±Jenkins methodology is
to run all ®ve of them and select the one which minimizes the sum of square errors (SSE) for each
series. Figure 9 shows the post-sample forecasting accuracies for AR models and suggests that

Figure 8. MAPE (a) ARMA with trend of damped smoothing, linear extrapolation and di�erencing.
(b) ARMA with trend of single smoothing, linear trend and di�erencing. (c) ARMA with AR(1) damped
trend, trend of linear extrapolation and di�erencing. (d) ARMA with trend of AR(1), linear trend
extrapolation and di�erencing
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AR(1) and AR(2) are more accurate than those selected through the Box±Jenkins methodology.
Figure 10 shows the post-sample accuracy of the MA(1) and MA(2). It suggests that the two MA
models are worse than those selected by the Box±Jenkins methodology for shorter horizons and
more accurate for long ones. Finally, Figure 11 shows the post-sample accuracy of always using
an ARMA(1,1) model. Such a model produces post-sample accuracies which are superior to

Figure 9. MAPE: model selected by the Box±Jenkins methodology and always using AR(1) or AR(2)
models

Figure 10. MAPE: model selected by the Box±Jenkins methodology and always using MA(1) or MA(2)
models
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those of the model selected through the Box±Jenkins methodology. This means that insistence on
the Box±Jenkins methodology of achieving random residuals before a model is considered
appropriate is not necessarily the only alternative to achieving more accurate post-sample
forecasts through ARMA models. AR(1), AR(2) and ARMA(1,1) models applied to seasonally
adjusted data provide at least as accurate post-sample results as those achieved through the Box±
Jenkins methodology. On the other hand, MA models are not as accurate in comparison to AR
or ARMA(1,1) models (see Figure 12). The extra advantage of AR(1), AR(2) or ARMA(1,1)
models is that they are much easier to apply as they require less e�ort and computer time. It may
be worth-while, therefore, to study the theoretical properties of AR and ARMA(1,1) models to
determine why their post-sample accuracies match those of the wider class of ARMA ones. It
may also be interesting to determine why the post-sample accuracy of strictly MA models is less
accurate than those of AR at least for short- and medium-term forecasting horizons.

CONCLUSIONS

This paper has studied the various aspects of Box±Jenkins methodology applied to ARMA
models. The major conclusion has been that the way that the data are made stationary in its mean
is the most important factor determining post-sample forecasting accuracies. Most importantly,
when the trend in the data is identi®ed and extrapolated using the same procedure as in other
methods that have been found to be more accurate in empirical studies than ARMA models
perform consistently better than the models selected through the Box±Jenkins methodology. In
addition, it was concluded that using seasonally adjusted data improves post-sample accuracies in
a small but consistent manner, and that log and power transformations also contributed to small
improvements in post-sample accuracies which become more pronounced for long forecasting

Figure 11. MAPE: model selected by the Box±Jenkins methodology and always using an ARMA(1,1)
model
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horizons. Finally, it was concluded that AR(1), AR (2) or ARMA(1,1) models produced as
accurate post-sample predictions as those found by applying the automatic version of the Box±
Jenkins methodology, suggesting that it is neither necessary, as far as post-sample accuracy is
concerned, to study the autocorrelations and partial autocorrelations to determine the most
appropriate ARMA model, nor to make sure that the residuals of such a model are necessarily
random.
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