School of Architecture, Land and Environmental Sciences

Conference papers

2006

Minimizing the Torsional Response of RC Buildings Under Earthquake Loading

Bakas, Nikolaos

South-East European Conference on Computational Mechanics

http://hdl.handle.net/11728/6418

Downloaded from HEPHAESTUS Repository, Neapolis University institutional repository

MAINIMAIZING THE TORGONAL RECOONER OF DO BUILDINGS HADER FARTHOLIAVE
MINIMIZING THE TORSIONAL RESPONSE OF RC BUILDINGS UNDER EARTHQUAKE
LOADING
2006
Bakas, Nikolaos ; Lagaros, N. D. ; Papadrakakis, M.
In this work a number of design approaches for 3D Reinforced Concrete (RC)
buildings are formulated as structural optimization problems and are assessed in
terms of the performance under earthquake loading. In particular the total life cycle
cost is considered as a measure for assessing the behaviour of the designs obtained.
Three design philosophies for the design of RC buildings are considered in this study.
In the first one the initial construction cost is considered as the objective function to
be minimized, the second one is formulated as a minimization problem of the
torsional responses while a combined formulation is also examined as the third
design approach. The second approach is considered with two distinctive
formulations. According to the first one the torsional behaviour is minimized by
considering the minimization distance of the mass center and rigidity centre while in
the second one this is achieved by minimizing the eccentricity between the mass
center and the strength center. It is shown that designs obtained according to the
minimum eccentricity of the rigidity centre formulation behave well in frequent
(50/50 hazard level) and occasional (10/50 hazard level) earthquakes, while designs
obtained according to the minimum eccentricity of the strength centre formulation
behave well in rare (2/50 hazard level) events. Designs based on a combined
formulation seem to behave equally well in the three hazard levels examined.