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Abstract—Multi-objective robot exploration, constitutes one of
the most challenging tasks for autonomous robots performing
in various operations and different environments. However, the
optimal exploration path depends heavily on the objectives
and constraints that both these operations and environments
introduce. Typical environment constraints include partially
known or completely unknown workspaces, limited-bandwidth
communications and sparse or dense clattered spaces. In such
environments, the exploration robots must satisfy additional
operational constraints including time-critical goals, kinematic
modeling and resource limitations. Finding the optimal explo-
ration path under these multiple constraints and objectives
constitutes a challenging non-convex optimization problem. In
our approach, we model the environment constraints in cost
functions and utilize the Cognitive-based Adaptive Optimization
(CAO) algorithm in order to meet time-critical objectives. The
exploration path produced is optimal in the sense of globally
minimizing the required time as well as maximizing the explored
area of a partially unknown workspace. Since obstacles are sensed
during operation, initial paths are possible to be blocked leading
to a robot entrapment. A supervisor is triggered to signal a
blocked passage and subsequently escape from the basin of cost
function local minimum. Extensive simulations and comparisons
in typical scenarios are presented in order to show the efficiency
of the proposed approach.

I. INTRODUCTION

AUTONOMOUS exploration by a single mobile robot has

attracted much research interest in the previous decades

giving rise to many robust and efficient solutions. This led to

an increasing usage transition of mobile robots from laboratory

testbed environments to real world ones. However, this tran-

sition has not yet been fully exploited and, therefore, it still

remains an active area of research. Compared to the limited

constraints found in laboratory testbed robot exploration, the

transition to real world operations might pose several new

constraints and operational objectives, including: a) limited

operational time; b) multi-objective temporal goals; and c)

environmental constraints, such as limited communications

and sparse or dense clattered workspaces.

In typical robot exploration, the single goal of the robot

is to maximize the overall explored area. The solution to

this problem is to find optimal target points that the robot
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should follow, so as to explore as much of the unexplored

workspace minimizing, if possible, the potential to explore

the same region. During the on-line exploration procedure,

the observation positions, and therefore the trajectories along

which the robot moves, are computed during the exploration

task.

In real world scenarios, the robot exploration goal might

be accompanied with operational time limitations, extending

the problem to a more complex one, since the robot must

explore as much of the workspace as possible in a minimum

time. An adequate exploration strategy should be: effective, to

build an accurate, precise and reliable map, efficient, to cover

the environment as fast as possible, and adaptable, to work in

different kinds of environments [1]. Robot exploration problem

is equivalent with the one of dynamically deploying a mobile

sensor to learn about an unknown environment [2]. In other

words, such a task is of immediate relevance to the fields of

sensor networks, calibration and terrain-aided navigation [3],

[4]. It is worth noting that on-line path planing is essential for

Simultaneous Planning Localization and Mapping (SPLAM)

[5], [6].

In the proposed work, we address a twofold challenge of

realistic robotic exploration operations, that is the ability to

efficiently handle multiple temporal goals while satisfying the

mission constraints. More precisely, the temporal goals, such

as multiple region exploration and target finding, are modeled

by different cost functions and are constantly monitored. Each

cost function is then triggered depending on the occurrence

of the required preconditions of each goal. Highly computa-

tional burden optimization algorithms were not selected, but

a cognitive-based adaptive optimization algorithm was used

instead [7]. The used methodology possesses the capability

of efficiently handling optimization problems for which an

analytical form of the function to be optimized is unknown,

but the function is available for measurement at each iteration

of the algorithm employed to optimize it. Thus, the overall

method is characterized by low computational cost rendering

it appropriate for real life robot exploration applications.

The rest of the paper is organized as follows. In section II

we briefly revisit approaches related to the proposed single

robot on-line expiration strategy, before we select and model

a search and rescue problem as our case study in section

III. In section IV, we analyze the proposed method, and

more particular, we define the mathematical constraints and

objectives that are subsequently introduced to the cognitive-

based adaptive optimization algorithm. In section V, we report

the simulation results and compare the performance of the
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proposed algorithm with other widely used exploration algo-

rithms through quantitative measurements. Finally, we provide

concluding remarks in section VI.

II. RELATED WORK

Applications of effective and efficient exploration include

planetary exploration [8], search and rescue [9] and military

uses [10]. A promising robot exploration approach has been

presented in [11], where the time-optimal path tracking prob-

lem is transformed into a convex optimal control problem, yet

ignoring the high-level geometric constraints of the workspace.

Similarly, authors in [12] face the path optimization problem

as equivalent to finding the best decision sequence maximizing

an auxiliary convex cost function. In this approach, state

and decision spaces are assumed to be discrete and finite.

The minimization of the search execution time has also been

addressed in [13], where time is modeled by a cost function

in which a back-projection algorithm propagates constraints

from the goal towards the start state. This approach is efficient

while it models the uncertainty evolution in time, however,

it is applicable only if the final goal remains the same. In

[2], Martinez et al. model the path planning problem with a

partially observed Markov decision process, with continuous

states and actions. The problem of path optimizing for a

single robot was also studied by Chekuri and Pal [14], who

developed a recursive greedy algorithm with strong theoretical

approximation guarantees. Unfortunately, the running time of

this algorithm makes the approach impractical. In [15], the

authors proposed an expansion of this approach so as to

overcome these limitations, making it practical for real world

sensing and robot exploration problems. This approach is

however restricted to off-line path planning and thus, does

not easily adapt to dynamic environments.

When multiple goals confine the overall robot exploration

operation, including for example, the minimization of traveling

cost together with the maximization of the estimated infor-

mation gain, the problem expands to finding an optimal joint

policy. These multiple goals are often conflicting and might not

be feasible to be reached simultaneously. Most of the existing

approaches tend to employ evaluation functions for each goal.

In the sequel, they combine the results of the functions in

an ad hoc global utility function that is maximized in order

to find the next best candidate position [16], [17], [18]. A

typical multi-objective scenario was presented in [19], where

high-level representation of petri net plans formalism was used

to address this problem. The authors attempted to represent

effectively concurrent robotic processes in order to specify

complex strategies for addressing and resolving the respective

multiple goals. However, this approach does not encode such

multiple goals in weighted functions to be optimized, but a

rather strategic level solution is adopted. A different approach

has been adopted in [1], where the values of the evaluation

function of each goal are kept separated without combining

them in a particular utility function.

Multi-objective optimization solutions have also been

widely proposed in the literature, yet their computational

complexity remains high, rendering them inappropriate for

time critical real world operations. A strive to handle moder-

ately complex robotic tasks in real world robotic applications

has been recently proposed in [20]. The efficiency of the

system was enhanced by incorporating point-based partially

observable Markov decision processes, which sample a limited

set of points from robot’s state space and by constructing

a simplified representation of the state space. The resulted

policies for target finding and navigation were reported to be

less time consuming and with high success rates. However,

in cases where the robot should take multiple actions so

as to reach a certain goal, a long time horizon is required.

The increased time steps result in an exponential complexity

growth, thus hindering the adoption of the aforementioned

method in long time robot operations.
Cost functions have been also considered for evaluating can-

didate observation locations by combining distance, expected

information gain and probability of successful communication.

Global evaluation of the exploration strategy performance was

investigated in [21] according to time and multiple visit metric.

This metric is estimated at each step, and the next robot

position is chosen by maximizing the expected increase of

global performance. Global cost functions were also presented

in [22] by combining criteria in an aggregated way and by

utilizing a theoretic approach based on multi-criteria decision

making. However, this theoretic approach cannot guarantee

always a good exploration strategy.

III. PROBLEM FORMULATION

In a typical search and rescue operation the first responder

team must safely and quickly reach an incident inside a

building without any robotic agent assistance [23]. Howsoever,

the team must be able to retract itself to the nearest exit, when

the conditions in the building become dangerous. This simple

task of reaching a target and being able to retract from the

building becomes a challenge when several constraints are

imposed in the operational environment. One typical example

is the operation of firefighters when they try to locate a victim

inside a certain area of a damaged building. In such scenarios,

the firefighters might not afford more than a few minutes

or even seconds to reach the victim, before the conditions

become threatening against their own lives. Once they locate

the victim, they must find their way to the exit as quickly

as possible. This may appear to be a particularly troublous

occasion in the case that the rescuer workers fail to retreat

along the same path they followed to enter the building, e.g.

owing to a collapse. Even when the operation conditions are

not directly life-threatening, precious time may be wasted by

searching the same room twice or failing to search another.
A substantially harder situation is when emergency services

have to respond to terrorist attacks in urban environments,

where possible explosions may cause loss of life or damage

in real estate [24]. In such scenarios, bomb squads are required

to search and explore an urban area for locating the threat by

deploying remote robotics under demanding time constraints

[25]. Conditions such as poor lighting or limited communica-

tion range may occur in such fields [26], [27].
In our proposed framework, we will study and model the

operation of a first responder robot holding the common goals
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and constraints of the aforementioned emergency scenarios.

More precisely, the robot will share the same initial knowledge

as the first responder units and will operate in multi-objective

and multi-constraint scenarios. In natural language, the desired

robot multi-objective scenario is described as follows: Given
an initial unexplored map, your initial position and a certain
time window, try to find the subject around a target position. If
you find the subject, explore as much of the target region as you
can and then return to the exit. If you did not find the subject,
resume the search. When returning to exit, provided that the
time constraints allow, explore as much of the unexplored
region map. In any case, keep your communication link and
do not exceed the given time window.

More precisely, our work focuses on mobile robot path plan-

ning in high dimensional and partially known environment,

with timing and multi-objective considerations. The kinematic

problem is not considered throughout the methodology, as-

suming accurate and deterministic models. Additionally, we

assume that the robots are perfectly localized. The same

assumption has been adopted in [28], [29], [18]. The goal-

directed mobile robot path planing, entails a robot moving

from some initial state to a target state while satisfying

constraints and updating map information through an onboard

sensor. The state space is continuous and bounded. In each

time step, the robot moves from the current location to a new

one, located on the circumference of a circle whose center is

considered the current position of the robot.

IV. PROPOSED METHODOLOGY

A. Mathematical Problem Formulation

In order to achieve all the aforementioned first responder

goals we must firstly model all the operational conditions and

constraints in a unified structure. This section aims to define

both the parameters and the constraints and subsequently in-

troduce them as cost functions to the cognitive-based adaptive

optimization algorithm.

Vectors R,G, S,H ∈ R
2 define the robot, target point, entry

point and wireless node transmitter coordinates, respectively.

Cr is the maximum safe range that allows communication

between the deployed wireless node transmitter and the first

responder robot on-board receiver. The two vector input oper-

ator D(x1, x2) : R2 → R, computes the respective Euclidean

norm between x1 and x2.

The universe set V contains all possible states of a point in

a map. The complementary subsets V1, V2, V3, V4 ⊂ V , where

Vi ∩ Vj = ∅, i �= j, represents a possible state as follows:

V1 : {Traversable and explored by the robot}
V2 : {Traversable and not explored by the robot}
V3 : {Known Obstacle}
V4 : {Obstacle explored by the robot}

The matrix P represents the initial belief of the state space as

provided by blueprint CAD models of the emergency scenes.

Apart from the known obstacles defined by the blueprints, the

rest points are initially defined as traversable. Thus, in matrix

P all elements may belong to any of the subsets V1, V2, or

V3. The matrix M initially contains the known obstacles, as in

matrix P, whereas the rest of the points are considered to be

(a) (b)

Fig. 1. Two different world maps and the potential path trajectories for
w1 >> w3 (green path) and w1 << w3 (yellow path), respectively.

unexplored. While the robot scans the emergency scene, the

points that stand within the field of view, transit to subsets V1

or V4. In other words, the corresponding matrix M is iteratively

updated and enriched with information from the first responder

robot exploration.

Given a radius rc and the coordinates of the goal G, the

circular goal area Cg is defined as the matrix points that

lie within that circle. The following equations summarize the

regions of an emergency scene as follows:

Ae =
∑

i,j∈V1

Mij (1)

Ab =
∑

i,j∈V1,V2

Pij (2)

Ge =
∑

i,j∈V1

Mij , ∀Mij ∈ Cg (3)

Gb =
∑

i,j∈V1,V2

Pij , ∀Pij ∈ Cg (4)

Exploiting the above regions of interest, we define the

following terms:

F1 =
Ae

Ab
(5)

F2 =
Ge

Gb
(6)

F3 = e−
D(R,G)

max |D(R,G)| (7)

F4 = e−
D(R,S)

max |D(R,S)| (8)

where F1 is a regularized term that indicates the exploration

percentage of the emergency scene. The F1 term will be equal

to one only in the case that there are no explored obstacles

in the area apart from the known ones. The F2 regularized

term indicates the percentage of the target area that has been

explored. The F3 term defines a function that encourages the

emergency situation robot to reach a position near the target,

since the exponential term acts as a strong attractor to G
due to its rapidly decreasing nature. Similarly, the F4 term

promotes positions nearby the initial point S. With all the

above definitions we can now define the following two cost

functions:

CF1 =
(w1F1 + w2F2 + w3F3)

1 + e(|D(R,H)|−Cr)
(9)

CF2 =
(w1F1 + w3F4)

1 + e(|D(R,H)|−Cr)
(10)

where w1, w2 and w3 are user defined weight factors re-

flecting the respective importance in each different emergency
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scenario. When the ratio w1

w3
increases, the robot is highly

motivated to explore the area and, as a result, it lags behind

with reaching the Cg . At the same time, a high w1

w3
value

ensures that even if the target is not within the robot’s field

of view, it will be able to find the target G by partially

contributing in the local minimum avoidance, as shown in

Fig. 1. The reader can find more detailed information about

the selected local minimum avoidance strategy in the next two

subsections. When the ratio w1

w3
decreases, the robot will reach

the target position G faster, tending, however, to get trapped

in a local minimum.

Figure 1 illustrates two potential path trajectories for two

different maps, depending on the parameter selection. The first

path is calculated when w1 >> w3 and the second one when

w1 << w3. In Fig. 1(a) the resulting path for w1 >> w3 aids

the robot to explore the unknown area while it approaches

the target position. On the other hand, the second resulting

path, i.e. for w1 << w3, is a straight line heading the robot

straight towards the target position. In a more confined world,

such as the one depicted in Fig. 1(b), the estimated path

when w1 >> w3 tends to explore the unknown area, helping

ultimately the robot to overcome the obstacle and reach the

target area. However, the estimated path when w1 << w3

follows a straight line approach and, thus, fails to approximate

the goal area beyond the obstacle.

By setting the value of parameter w2 greater than w1 and

w3, the robot is motivated to explore the area nearby Cg . The

numerator of Eq.(9) guides the robot to explore as much of the

emergency area along with the target area and also helps the

robot to find a position, such that the goal will be in its line

of sight. The denominator acts as an attractor to the wireless

node transmitter position H, according to its maximum signal

range.

When the robot has eventually explored adequate target

area, it should act as the human first responders do, i.e. it must

retreat to the initial exit point as soon as possible. Within the

same time interval, the second cost function of Eq. (10) is

enabled, the numerator of which boosts the robot to reach its

starting point and sets out to explore the rest of the region

to the maximum extent possible. This trade off between the

two objectives is highly correlated with the available time

remaining. As stated earlier in this section, the initial ratio
w1

w3
motivates the task of exploration, but as the time horizon

decreases, this ratio progressively drops driving the robot to

the exit.

In both Eq. (9) and Eq. (10) the individual terms in which

the numerator is more persistent depends on the operator’s

discretion and the current emergency scenario needs. The

critical transition between the two cost functions is achieved

if the conditions in Eq. 11 and Eq. 12 hold. More precisely, a

vector of length Tn stores the most recent values of F2. Given

a threshold Tf2, where 0 < Tf2 < 100, a transition is allowed

when the mean value of Tn is greater than zero (Eq. 11) and

the absolute difference between the mean value and the value

of F2 is smaller than a percentage of the mean value. That

threshold percentage is defined via the Tf2, as expressed by

Eq. 12. By defining the mean value greater than zero, it is

ensured that the goal area will be at least partially explored

by the first responder robot. A second threshold Tm for the

mean value can be also applied, forcing the robot to explore

the goal area in a defined desired level.

Tn∑
i=0

F2[i]

Tn
> 0 (11)

∣∣∣∣∣∣∣∣∣

Tn∑
i=0

F2[i]

Tn
− F2[i+ 1]

∣∣∣∣∣∣∣∣∣

<

Tn∑
i=0

F2[i]

Tn

Tf2

100
(12)

In each time-step the robot moves a distance α from its

current position towards a given direction. Considering the

robot current position R in time-step Tc as the center of a

circle with radius α, the possible next positions in time-step

Tc+1 would lie on the circumference of that circle. However,

when the condition in Eq. 13 holds, a local minimum situation

is detected. The adaptive optimization algorithm will then try

to avoid such minima by increasing the value of α iteratively,

seeking for new possible robot positions that would lie in the

circumference of the updated circle. For any time step in which

the condition in Eq. 13 holds α is increased by one until the

condition is no longer valid; then the value α returns to one.

The consecutive number of time-steps in which the robot is

trapped in a local minimum equals to the expansion rate of

the parameter α. Equation 13 affects the robot performance

in the same fashion as the one in 12. The criteria to select

the most suitable future position of the robot are described in

subsection IV-C.

∣∣∣∣∣∣∣∣∣

Tg∑
i=0

F1[i]

Tg
− F1[i+ 1]

∣∣∣∣∣∣∣∣∣

<

Tg∑
i=0

F1[i]

Tg

Tf1

100
(13)

B. Cognitive-Based Adaptive Optimization Approach

The Cognitive-based Adaptive Optimization (CAO) ap-

proach [7], [30], [31] was originally developed and analyzed

for the optimization of functions for which an explicit form is

unknown but their measurements are available as well as for

the adaptive fine-tuning of large-scale nonlinear control sys-

tems. Recently, CAO based methodologies have been applied

in a wide range of robotics related applications. In [32] CAO

was used to position a team of mobile robots for a surveillance

task in a non-convex 2D environment with obstacles. The

robots were equipped with global positioning capabilities and

visual sensors able to monitor the surrounding environment. In

[33] CAO was used to align a team of flying robots to perform

surveillance coverage missions over an unknown 3D terrain

of complex and non-convex morphology. The performance of

the proposed approach was analyzed in terms of convergence,

scalability and applicability. CAO was combined in [34], with

a state-of-the-art visual-SLAM algorithm [35] in a two-step

procedure which allowed the alignment of a team of aerial

robots to perform terrain surveillance coverage over a terrain

of arbitrary morphology by using only onboard vision. CAO
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was also implemented in the case of teams Autonomous

Underwater Vehicles (AUVs), to fully-autonomously navigate

them when deployed in exploration of unknown static and dy-

namic environments towards providing accurate static/dynamic

maps of the environment [18]. Another application in the case

of mobile robots is presented in [36], where CAO was utilized

to facilitate navigation in an unknown complex environment,

while interacting with humans considering their comfort.

In this section, we will describe how the CAO approach

can be appropriately adapted and extended, so as to be

applicable to the problem of a first-responder robot, where it

must generate a sufficiently accurate map of the environment

for reporting target location and possible traversable paths,

in a strictly defined time window. More explicitly, let us

consider the problem as formulated in section IV-A. The

optimization criterion can be expressed as a function of the

robot’s positions:

Jk = J (xk) (14)

where k = 0, 1, 2, . . . denotes the time-index, Jk denotes

the value of the optimization criterion at the k-th time-step,

xk denote the position of the robot and J is a nonlinear

function which depends – apart from the robot’s positions – on

the particular environment where the robots live; for instance,

it depends on the location of the various obstacles that are

present. At each time-step k, an estimate of Jk is available

through robot’s sensor measurements,

Jn
k = J (xk) + ξk (15)

where Jn
k denotes the estimate of Jk and ξk denotes the noise

introduced in the estimation of Jk due to the presence of noise

in the robot’s sensors.

Apart from the problem of dealing with the optimization

criterion, we have to consider the constraints deriving from the

operation of the robot, i.e obstacle avoidance. In other words,

at each time-instant k, the vector xk should satisfy a set of

constraints which, in general, can be represented as follows:

C(xk) ≤ 0 (16)

where C is a set of nonlinear functions of the robot’s

positions. As in the case of J , the function C depends on

the particular environment characteristics (e.g. location of

obstacles).

Given the mathematical description presented above, the

problem can be mathematically described as the problem of

moving xk to a position that solves the following constrained

optimization problem:

maximize (14)

subject to (16) .
(17)

As a first step, the CAO approach makes use of function

approximators for the estimation of the unknown objective

function J at each time-instant k according to

Ĵk(xk) = ϑτ
kφ(xk). (18)

Here Ĵk(xk) denotes the approximation/estimation of J
generated at the k-th time-step, φ denotes the nonlinear vector

of L regressor terms, ϑk denotes the vector of parameter
estimates calculated at the k-th time-instant and L is a positive

user-defined integer denoting the size of the function approxi-

mator (18). The vector φ of regressor terms must be chosen so

that it satisfies the so-called Universal Approximation Property
[37], i.e. the approximation accuracy of the approximator (18)

should be an increasing function of the approximator’s size

L. Polynomial approximators, radial basis functions, kernel-

based approximators, etc, are known to satisfy such a property

(see [37] and the references therein). The parameter estimation

vector ϑk is calculated according to:

ϑk = argmin
ϑ

1

2

k−1∑

�=�k

(Jn
� − ϑτφ(x�))

2 (19)

where �k = max{0, k − L − Th} with Th being a user-

defined nonnegative integer. Standard least-squares optimiza-

tion algorithms can be used for the solution of (19).

As soon as the estimator Ĵk is constructed according to (18),

(19), the set of new robot’s positions is selected as follows:

Firstly, a set of N candidate robot’s positions is constructed

according to:

xi
k = xk + αζik, i ∈ {1, . . . , N} , (20)

where ζik is a zero-mean, unity-variance random vector with

dimension equal to the dimension of xk. As mentioned in

section IV-A, α is the distance the robot moves in each time-

step. This value remains constant and equal to 1, while the

condition in Eq. 13 does not hold. In order to avoid the

entrapment of CAO algorithm in a local minimum, for any

time step in which the condition in Eq. 13 holds, α increases

by one, until the condition is no longer valid.

Among all N candidate new positions xi
k, . . . , x

i
k, the ones

that correspond to non-feasible positions/poses – i.e. the ones

that violate the constraints (16) – are neglected and then the

new robot’s positions are calculated as follows:

xk+1 = argmax
i ∈ {1, . . . , N}
xi
knot neglected

Ĵk(x
i
k)

In this work we apply the CAO methodology using the cost

functions described in details in section IV-A. The optimiza-

tion criterion used corresponds to Eq. 9 and Eq. 10, depending

on the value of the threshold Tf2. We have also considered the

physical constraints which apply in the aforementioned case,

which include the following:

• the robot remains within the terrains limits, i.e. within

[xmin, xmax] and [ymin, ymax] in the x- and y-axes,

respectively;

• the robot do not approach the obstacles closer than a

minimum allowable safety distance dr.

• the robot can move only towards to a fully estimated and

within the line of sight position

It is not difficult for someone to realize that all the above

constraints can be easily cast in the form of Eq. 16 and thus

can be handled by the CAO algorithm.
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(a)

(b)

Fig. 2. Two local minimum states and the respective solutions provided by
the supervisor.

C. Local Minimum Avoidance

This section presents the selected local minimum avoidance

strategy that is followed by the first responder robot. Using the

definitions described in subsection IV-A, the proposed method

defines the entrapment in a local minimum by exploiting the

F1 term. Since F1 is a regularized term that indicates the

percentage of the map that has been explored, it can be treated

also as a strictly accumulative term. Thus, Eq. 13 can be

considered as an inequality where the left part stands for

the absolute difference between the current value of F1 and

the mean of previous Tg values, while the right part of the

inequality acts as a threshold value.

A hypothetical supervisor monitors Eq. 13 in every Tl

steps and, in case that the inequality is valid, it indicates the

entrapment of CAO in a local minimum. The value of α is then

increased by one, initiating a phase where the CAO algorithm

attempts to step away from the current local minimum. Since

CAO tries to leave the basin of attraction of the current local

minimum, a small increase of α by one guarantees that it

will not step away too far and possibly miss the optimum

which is expected to be somewhere nearby the current local

minimum. After Tl steps, the supervisor recomputes the left

term of Eq. 13, increasing iteratively the α value only if the

inequality is satisfied. In any other case the α value is reset

to its initial value of one, identifying a successful completion

of local minimum avoidance.

In Fig. 2, for the shake of comprehension, we simplify the

state model. In this case, we assume that in each time step

the robot moves from its current position to one of the 8

discrete neighbour cells. This simplified approach illustrates

two different cases of local minimum, where the supervisor

initiated a local minimum avoidance loop. More explicitly, in

Fig. 2(a) the CAO falls into a local minimum and entraps the

robot between the two only possible positions of P1 = (2, 2)
and P2 = (3, 3). In that example the constant alternation

between these two positions prevents the robot from exploring

the area. One of the great advantages of CAO approach relies

in the fact that in each time step (iteration) the algorithm

Fig. 3. The Open Dynamics Engine mobile robot simulation environment.

selects the most appropriate position for the robot, among a set

of randomly selected neighboring positions and not among the

total available positions. In this example, an exhaustive search

algorithm would select as the most appropriate position, the

one resulting in a local minimum (P (3, 3)). In this example, at

the specific time interval, CAO is evaluating the two randomly

selected position P1(3, 1) and P2(1, 3). As it can be seen, both

new possible positions can help the robot to escape from its

local minimum.

In Fig. 2(b) the robot is trapped between the two positions

of P1 = (6, 4) and P2 = (5, 3), thus, the left part of the

Eq. 13 constantly decreases, until it becomes lower than the

threshold value. In that case, in order to avoid the depicted

local minimum, the α value is equivalently increasing to 3.

V. SIMULATION RESULTS

This section presents simulation results based on the Webots

real-time dynamic simulation platform. In our simulation ex-

periments, each scenario is represented as a 150m by 150m 3D

virtual world of an outdoor parking lot where the Pioneer 3-AT

mobile robot is equipped with a SICK 291 laser measurement

system fixed to a pan servo actuator as shown in Fig. 3.

The Open Dynamics Engine library was utilized for all the

necessary physics features such as mass, friction, communica-

tion range and laser accuracy. More precisely, the utilized laser

sensor range was 8 meters with an angular resolution of 0.5◦,

performing a full 360◦ rotation per second. A bidirectional

communication between the robot node and the supervisor

node was also modeled. The cruising speed as well as the

rotation speed of the robot were kept uniform. The simulation

environment was particularly useful because it allowed us to

perform fast, automatic sensor data collection and analysis

over various parameter sets in extensively large operational

fields such as the 22500m2 parking lots.

The experimental evaluation was performed by comparing

the final explored map produced by the search algorithms

under evaluation along with the ground truth map which is

considered to be the fully explored map. Furthermore, an equal

and predefined time window was set for all the map scenarios

and the search algorithms as well. Figures 4(a), 4(b) and 4(c)

depict the ground truth maps of Scenario #1, Scenario #2 and

Scenario #3, respectively. The known obstacles where modeled
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(a) (b) (c)

Fig. 4. a) Scenario #1 ground truth map for rc = 50 and rc = 100, b) Scenario #2 ground truth map for rc = 50 and rc = 100, c) Scenario #3 ground
truth map for rc = 50 and rc = 100.

as red barrels, while the unknown ones are considered to be

the parked cars. The orange circle is used to point out the

position of the goal and the green one the starting position

of the robot along with the stationary communication node.

Finally, the two overlaid red and yellow circles indicate the

circumference of rc for 50 and 100 meters, respectively.

Comparison results using different parameters for both

scenarios are shown in Tables I, II and III respectively. The

proposed algorithm was compared with both the random [38]

and the Simultaneous Perturbation Stochastic Approximation

(SPSA) [39], [40] search techniques. The random one was

selected as the baseline method while the SPSA due to the

fact that it emulates gradient descent optimization in similar

terms, as CAO does. The SPSA differs from the CAO approach

since the first one employs an approximation of the gradient of

the appropriate cost function utilizing only the latest samples,

while the CAO approach employs linear parameter approx-

imators that incorporate information of past experiments in

certain time intervals together with the concept of candidate

perturbations for efficiently optimizing the unknown function.

For each set of parameters the experimental procedure was

repeated ten times, due to the stochasticity of all the compared

methods, thus, the presented results are the mean values of

those iterations. Different values for rc radius were examined

during the simulations. The rc radius is used for defining the

circular area Cg around the target and the rv radius defines the

laser sensor range. In our experiments we defined rv = 8m, a

typical range used in such applications. The comparison tables

illustrate for all the three aforementioned search algorithms the

influence of rc parameter into the maximum values of cost

functions CF1 and CF2, along with the explored percentage

of the goal area and the overall explored percentage of the

map. It must be noticed that the standard deviation of the

exploration percentage derived from the proposed method is

very small in all the simulations conducted, indicating the

proposed algorithm’s stability.

Figures 5 and 6 illustrate in eight time steps the derived

trajectory of the proposed methodology for the Scenario #1

and the Scenario #2, respectively. In both figures, the known

obstacles are the barrels in red color, while the unexplored

area -colored in black- turns into a visible area along each

progressive scan conducted by the laser measurement sensor

mounted on the robot. We selected to include known obstacles

Fig. 5. The explored area in different time steps T for the Scenario #1.

Fig. 6. The explored area in different time steps T for the Scenario #2.

in our experiments since this represents a typical emergency

scenario, where the blueprints of a critical infrastructure are

available to the first responder teams. The green dot indicates

the robot starting position, while the yellow circle indicates

the target area, Cg , to be explored. Starting from an initial

position, the robot heads towards the circle Cg , in order to

explore this particular area. When the Tn value of F2 term

meets the predefined threshold, a transition between CF1

and CF2 is triggered. As a result the robot explores in the

remaining available time the rest of the unexplored area and

eventually returns in its initial position.

Table I shows the simulations results on Scenario #1. The

CF1 and CF2 values are derived from the positions of the

robot on the map. Since CAO, SPSA and random techniques

are responsible for the selection of those positions, higher cost

function values demonstrate better fitting and, thus, according

to Table I, SPSA selects more appropriate positions than the
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TABLE I
SIMULATION RESULTS FOR SCENARIO #1.

CF1 CF2

rc CAO Random SPSA CAO Random SPSA
50 16.72 0.03 12.19 0.58 0.32 0.39
100 15.08 2.88 7.03 0.70 0.26 0.38

Goal Area (%) Map (%)
rc CAO Random SPSA CAO Random SPSA
50 88.88 0.14 65.27 60.23 31.02 39.99
100 81.16 15.69 38.22 72.94 27.85 39.35

TABLE II
SIMULATION RESULTS FOR SCENARIO #2.

CF1 CF2

rc CAO Random SPSA CAO Random SPSA
50 16.02 2.64 10.39 0.53 0.21 0.28
100 14.04 3.20 6.13 0.69 0.23 0.28

Goal Area (%) Map (%)
rc CAO Random SPSA CAO Random SPSA
50 89.09 15.29 59.31 56.24 20.78 28.88
100 76.50 18.11 34.09 72.02 23.79 29.15

random method. However, for certain parameter values in

CF2 function, some results could be considered comparable.

Nevertheless, CAO exceeds in performance both the other

two search algorithms in all the sets of parameter values.

Regarding the percentages of the goal area exploration, the

random method cannot cover more than the 15.69%, while

the SPSA manages, under specific parameter values, to cover

65.27%. On the other hand, CAO explores 81% of the goal

area in the worst case, while in certain simulations it has

accomplished a total of 89% coverage.

Concerning the exploration of the whole map, the random

approach performs significantly better than in the previous

simulations. The SPSA achieves a very good performance that

is superior to the random algorithm performance, nevertheless

CAO outperforms both techniques. The simulation results of

Scenario #2, as shown in Fig. 6 and Table II, confirm the supe-

rior performance of the proposed method since the analogy of

the compared results in all the measurable properties remains

the same.

In scenario #3 a rather non typical parking lot was consid-

ered, in order to evaluate the presented methodology regarding

its local minima avoidance properties. For purposes of compar-

ison, both SPSA and random algorithms were also evaluated.

In Fig. 7(a) the thick green dot represents the starting point

while the blue line depicts the shortest path in the case where

no obstacles where existed, i.e. the euclidean distance. On the

contrary, the green line shows the ideal path taking also the

obstacles into consideration.

TABLE III
SIMULATION RESULTS FOR SCENARIO #3.

CF1 CF2

rc CAO Random CAO Random
50 16.61 0.84 0.63 0.28
100 15.62 1.54 0.65 0.33

Goal Area (%) Map (%)
rc CAO Random CAO Random
50 93.76 4.22 64.36 34.41
100 86.32 8.35 67.92 31.56

(a)

(b)

Fig. 7. a) The blue line indicates the shortest path in the absence of obstacles
and the green one the ideal path considering the obstacles b) An illustrated
example of how the SPSA method ”gets stuck” in local minimum.

The first evaluated algorithm was the SPSA, which pre-

sented the poorest results. In fact, SPSA did not manage

to complete the task for all tested sets of parameter values,

since it got trapped in local minima in every trial. In order to

minimize the function criterion, SPSA chooses between only

two possible values, which are in opposite direction to each

other. In a test case, such as the one illustrated in Fig. 7(b), the

first value would increase the cost function while the second

one would refer to a position on non-traversable obstacle.

More precisely, the red arrow denoted with P− corresponds

to the first possible value which increases the cost function

and the red arrow denoted with P+ corresponds to the second

possible position which leads to a non-traversable position. In

these particular but possible states, SPSA gets trapped in a

local minimum, for all tested sets of parameter values.

Figure 8 presents in eight time steps the derived trajectory

of the proposed methodology. In time step T = 13 the robot is

trapped for the first time in a local minima, while in T = 22 it

manages to get away. The same process is repeated in T = 57
and T = 67, respectively. The CF2 is initiated at T = 356 and

the rest of the area is explored while the robot returns to its

initial position. The correspondence between the ideal course

in Fig. 7(a) (green line) and the one derived by the proposed

method, as illustrated in Fig. 8, demonstrates the ability of the

proposed algorithm not to step too far away from the global

optimum, while avoiding local minima. The summarization

of the simulation results is shown in Table III, where the

superiority of the proposed algorithm is confirmed once more.

In particular, CAO was shown to exhibit satisfactory (local)
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Fig. 8. The explored area in different time steps T for the Scenario #3.

(a) (b)

Fig. 9. The values of CF1 and CF2 with respect to time steps in a single
repetition, for rc = 100 and rv = 8.

convergence characteristics where SPSA and random failed to

provide convergent solutions for any choice of their design

parameters.

Figure 9 presents of cost functions CF1 and CF2, with

respect to time step T . Although, the criterion for the transition

from CF1 to CF2 includes only the F2 term, it is shown that

the cost function CF1 also converges to a certain value as

well.

VI. CONCLUSIONS

In this paper we have proposed a systematic multi-objective

strategy for search and rescue mobile robots based on multi-

constraint scenarios. The proposed strategy can effectively ad-

dress multiple non binary temporal goals utilizing a low com-

putational cost cognitive optimization algorithm. The search

and rescue temporal goals were modeled thought different cost

functions which can only be triggered when certain operational

preconditions are met. The overall method is characterized

by low computational cost rendering it appropriate for real-

time search and rescue applications. Simulation results demon-

strated the effectiveness of our approach when compared

with other well known search optimization techniques. For

future work, we plan to extend the proposed technique from a

single-robot approach to multi-robot one. Systems employing

multi-robots have several advantages over single robot systems

but pose several new challenges, including: Coordination and

cooperation, integration of information collected by different

robots into a single map, dealing with limited communication,

uncertainty in localization and sensing, Decision making,

reasoning, task sharing and navigation [41].
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