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A Survey of Time Series 

Spyros Makridakis 
The European Institute of Business Administration, Fontainebleau 77305, France 

"All our measurements and observations are nothing more Chan approximations to the truth". 

(Gauss, Theoria Motus) 

Summary 

This paper surveys time-series methods developed and used in the fields of statistics, engineering, operation 
research and economics. It will describe each of the major methods now in existence and synthesize them into 
an integrated whole by pointing out similarities and differences existing among them. The applicability of the 
different methods to various real-life requirements will be discussed and further research needs will be raised. 

Introduction 

The last 40 years have witnessed an unprecedented growth in the area of time series. 
Statisticians, engineers, operation researchers and economists have departed from different 
starting points with a variety of needs and objectives in mind to develop a new and highly 
important area. Their work has resulted in a theoretically sound body of knowledge, with 
considerable practical value and widespread usage in many fields of endeavour. 

It will be the purpose of this paper to survey and synthetize all major categories of time-
series methods developed in the areas of statistics, engineering, operations research and 
economics. A main objective of the work that follows is to allow the time-series specialists 
of different fields to know of relevant work already available in others. It is hoped that this 
can facilitate communication and allow existing developments to be shared across disciplines; 
needless to say that such a task is very difficult at present because of the fragmentation of 
knowledge along field lines and the existence of a different terminology in each. Other 
objectives of the paper are to serve both as a guide to newcomers and as a reference to ail 
important contributions to those already familiar with time series. Part I of this paper will 
provide the reader with a short background and a brief history of time series. Part II will 
examine autocorrelation and spectral techniques as the two major approaches to time-series 
analysis. It will then move to Part III which will describe the different time-series methods 
classified into the five categories of Autoregressive and Moving Averages (ARMA) processes, 
Filtering methods, Smoothing models, Time-series Decomposition methods and Miscellaneous 
techniques. Finally, a discussion of the main areas of time-series applications will follow 
and further areas of research will be suggested. 

Time-series considerations originated in 1807, when the French mathematician Fourier 
claimed that any series can be approximated as the sum of sine and cosine terms. This idea 
was used by Schuster (1906) who applied Fourier's expansion to estimate the length of hidden 
periodicities and who widely utilized periodogram analysis in his work. The modem era in 
time series started in 1927 with Yule (1927) and achieved its major advances in 1938 when 
Wold (1954) developed a comprehensive theory of Autoregressive/Moving Averages (ARMA) 
schemes, around 1940 when Wiener and Kolmogoroff (1941) solved the estimation problem 
for continuous and discrete filters correspondingly, and in the early '60s when Kalman (1960) 
and Kalman and Bucy (1961) extended Wiener and Kolmogoroff's estimation procedures to 
non-stationary series involving systems in the time domain. On the Operation-Research side, 
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the Tate '50s and early '60s saw the development of exponential smoothing models (1961) 
which, simple as they were, became utilized by business firms and the military. In the area 
of decomposition, the utilization of digital computers opened a new era (1957) by allowing 
the cumbersome computations, done beforehand on a desk calculator, to be easily performed 
by the computer. Finally, spectral analysis appeared as a viable method of time-series analysis 
(1948; 1950). As with decomposition methods, the appearance of the digital computer made 
both spectral and autocorrelation methods practicable in the analysis of time series. 

The progress made in the development of time-series methods has been due to the following 
factors: 

(a) deep dissatisfaction with periodogram analysis as a practical tool; 
(b) peripheral advances in mathematics, probability theory and statistical techniques; 
(c) the need for reliable methods (mainly in engineering, economics and business) to 

estimate and predict the pattern, or behaviour, of different types of phenomena or 
systems. 

The aim of the time-series approach is to separate the noise (randomness) from the pattern 
(behaviour) of a real process (system). This is achieved through two phases: (i) The first 
phase is called "time-series analysis" whose objective is to discover the characteristics of the 
real process or phenomenon generating the series. This is done by the utilization of either 
autocorrelation or spectral methods. The second phase includes several categories of methods 
which can be classified as autoregressive/moving average, transfer function, filtering, exponen-
tial smoothing, and decomposition. Each of the methods attempts to separate the noise from 
the observed value of time series in its own way; however, the ultimate objective is different: 
Autoregressive/moving-average schemes, exponential smoothing models and decomposition 
methods aim at forecasting; transfer-function models are usually used for control purposes, 
while filters are primarily used to estimate current states of real processes. 

Before we proceed any further, a very brief description of the two phases and the time-
series methods within each will be given to serve as an overall overview of what is to follow: 

I. Time-Series Analysis, as the narre implies, involves the analysis of data so that their 
characteristics (level of stationarity, length of seasonality, frequency, amplitude, phase) 
can be discovered. The analysis can be done in the time domain through the utilization 
of the autocorrelation function or in the frequency domain through the use of the 
spectral function. 

II. Time-Series Methods include the following categories of techniques : 

1. (a) Autoregressive (AR) and Moving-Average (MA) Schemes which assume that a 
given value of a time series is a weighted linear sum of past values and/or residual 
deviations, et. Thus, (1) is an autoregressive scheme (when y is equal to zero), 
(2) is a moving-average process, while (3) is of mixed autoregressive/moving-
average character. 

Xt +v = E wixt_i+et+,=wixt_i+w2x,- 2 	WpXt _, + et+, 	(1) 
= 

where Wi  represents the autoregressive parameters (also called "weighting", 
or,"impulse response function"). 

X, = et — E () jet _ = et — 0 let _ 1 — 0 2e, _ 2 — — eget _ I 	 (2) 

where et  and et _.;  are the residual errors at period t and t—j respectively, and 
j is the jth moving-average parameter. 
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Xt  = E vvixt _ i + et — E 
= 

= wixt_i + w2xt_ 2 + + WpXt-p+ et  — Ot  -1— 0 2et - 2.• • — °et-g 	(3) 
where 	Op  et  and et _i  are defined as before. 

1. (b) Transfer-function Models aim at linking the output of some process, Y„ by 
several inputs X„ X,_,, X,_ 2, ..., in such a way that the relationship between 
the inputs and outputs at previous time intervals can be estimated and sub-
sequently used to control the process. A transfer fonctions is of the form: 

Yt -1- fliYt-1+fizYt-2+•••+$517t-s = ccoXt-d — ceiXt-d-i — ••• —  arXt-a-, (4) 
where a, and Si  are the parameters of the process of the input and output 
correspondingly. 

2. Filtering Models are special cases of (1) when y = — 1. They are of particular interest 
to engineers in that they can be designed through electrical circuit, consisting of 
inductances and capacitancies, in such a way that no inputs beyond a certain range 
will be accepted. 

3. Exponential Smoothing methods are special cases of autoregressive schemes when 
< —1. Its weights or parameters, W,, [see (1)] decrease according to some exponen-

tial fashion, thus the narre "exponentiel" is utilized. 
4. Time-Series Decomposition methods work by either "breaking up" the series into 

trend, seasonal and irregular components, or by passing varying frequency filters 
through the data to separate low, medium or high frequencies. 

The above-mentioned methods present a rather wide variety of techniques which can be 
used in different areas of applications. Their cost accuracy, and complexity vary considerably 
in a way that can satisfy various needs existing in real-life applications. They will be described 
in Parts II and III of the paper. 

I. A Short Background into Time Series 

A time series, X(t), is a set of observations ordered sequentially in time. Khintchine (1932, 
1934) showed that it can be viewed as a random process of the variables X1, X2, X3, ..., 

	

sampled at equidistant time intervals t1, t2, t3, 	Furthermore, Kolmogoroff (1933) 
showed that it is equivalent to a probability distribution in n number of dimensions. Thus, 
the theory of probability and statistics can be applied when dealing with time series. Each 
time point corresponds to one dimension in the distribution, and consists of two parts: X;, 
generated by the real process represented through the time series, and u„ a white noise term. 
Thus, 

X, = X; +u, 	 (5) 
where Xt  is usually expressed as deviation from the overall mean of the time series. The 
distribution of u, is often assumed to be normal with: 

E (tir) = 0 	 (6) 
and 

°"` if i=0  
= 

	

E (utut,i) { 
 0 	if i e o 

1. Fourier Series 

(7) 

In 1807, Joseph Fourier showed that any time series, X (t), can be expanded into a sum of 
sine and cosine terms which can approximate the series X(t), as close as one wishes, provided 
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that the number of sine/cosine terms is large enough. In tribute to his highly significant 
discovery, the result of the expansion is called a "Fourier series".1  Thus, 

7tt 
X(t) 	

2n t 
E ai 	— i+ E bi  sin — j. 	 (8) 
= 1 	 = 

The estimation of coefficients ai  and b„ called the "Fourier coefficients", can be calculated 
from the following definite integrals. 

nt 
a,— —

2 	 2 
X (t) cos 	dt 	 (9) 

0  T  

2 ST 	t 

T 	

2n 
bi  = — 	X (t) sin — dt. 	 (10) 

From (8), (9), and (10), it seems that identifying the behaviour of a time series, or predicting 
its future values is indeed a trivial affair. But in practice, there are many problems such as 
the number of sine and cosine terms to be included, how to specify the value of T, or how 
to estimate the integrals of (9) and (10). The main difficulty, however, is that (8) cannot 
accommodate for the existence of noise [Bartlett (1935)]. In other words, it assumes that the 
time series is deterministic, or the noise, u„ in (5) is zero. This is a great disadvantage because 
there are few noiseless series in the social sciences or engineering. This drawback, therefore, 
makes the utilization of Fourier series for prediction purposes nil. 

2. Search for Hidden Periodicities 

Since early in the nineteenth century [Herschel (1801)], interest has centred on the existence 
of common periodicities in certain natural phenomena and their length. A popular subject 
of the investigation has been the variation in sunspot activity and its influence on terrestrial 
phenomena. The method of finding the length of a hidden periodicity consisted of dividing 
the data into a number of subgroups [arranged horizontally one below the other called the 
"Buys-Ballot table" (1847)] whose length was somewhat longer than the suspected length of 
the periodicity, and then calculating the mean of the first element, of all subgroups, second, 
third, 	last; subsequently the deviations of each of the calculated means from the overall 
mean were found. As the next step, the length of periodicity was assumed to be first shorter 
and then longer around the suspected length. The same process of finding the differences of 
the shorter and longer means from the overall mean was utilized. Finally, these deviations 
were plotted and the highest one was assumed to correspond to the real length of periodicity 
[Steward and Dodgson (1879)]. Such a job was very laborious and time-consuming. Con-
sequently, it was suggested [Stokes (1879), p. 120] that the data should be analyzed in terms 
of a Fourier series whose coefficients, (9) and (10), could be calculated and then their square 
sum plotted. Since ai  and bi  of (9) and (10) will correspond to different periods of time, the 
length corresponding to the highest square sum: cî = a7-Eb? (called "intensity of the ith 
harmonie"; it is highest at the ci  corresponding to the true length of periodicity — see Spectra 
Analysis) of ai  and bi  will be the true length of periodicity. Although such a suggestion did 
rot proue to be less time consuming, it opened a new and important approach to discovering 
hidden periodicities in time series: the periodogram. 

The periodogram, as a way of discovering the length of hidden periodicities, carried con-
siderable esteem and was used widely, but it also troubled its users. The drawbacks of 
periodograms became evident little by little: Schuster (1906), for example, found out that 
once he divided his data into two halves, the periodogram of each was quite dissimilar. He, 

1  See Carslaw (1930), Lanczos (1966) and Zymund (1959). 
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of course, attempted to explain the fact but with little success sine the real reasons were not 
logical but mathematical. 

Another classical utilization of periodogram analysis was made by Beveridge (1922). 
The result again showed wide discrepancies between the first and second halves of the data 
but in addition, it became clear how erratic a periodogram can be and, at the same time, 
sensitive to small changes in the length of period: a small decimal increase can result in a 
high peak, while another small increase can bring a trough. The obvious consequence was, of 
course, that one had to apply an extremely large number of decimal periods to make sure 
that no important peak was missed. These problems existed in addition to questions raised 
about the ability of periodogram analysis to make sure that a given peak was statistically 
significant. 

3. The autoregressive Moving-Average Approach 

Yule, in 1926, claimed that a Fourier series expansion cannot do an adequate job in terms of 
predicting a series or estimating the length of its periodicity because the length and amplitude 
(see section 11.3 for definition) of real life series are not constant, an assumption made in the 
periodogram analysis. Yule (1927), in another article, argued that it would be more realistic 
to assume a type of disturbed harmonic series where "both length and amplitude can vary 
by reason of chance". He further showed that such a series can be better described as a 
function of its past values. In other words, he introduced the concept of autoregression, even 
though he restricted himself to an order of four or fewer terms [p 4 in (W. Yule's approach 
was extended by Walker (1931) who defined the general autoregressive scheme of equation 
(1). Later, Slutsky (1937) presented the moving-average scheme described by (2), and finally, 
Wold (1954) showed that any discrete, stationary time series X, can be broken down into : 

h 	s 	(2.7rtk  
X, = E wixt _ i — E ofe,_,— E E Yrh  cos 	itrk)* 	 (11) 

i=1 	 j = 1 	 r =1k=1 

For practical purpose, the last term of (11) is ignored, thus (3) is actually an approximation 
of (11) where its last term is random noise equal to et. 

The works of Walker, Slutsky and Wold, in addition to the theoretical developments in 
mathematics, statistics and computational sciences, open the road to the modern approach 
to time series. This approach is based on the assumption that a time series can be adequately 
described in terms of previous values of the series itself and/or previous error terms. 

Finally, Kendall (1945) showed beyond any doubt that the periodogram can give very 
misleading results. This was proved theoretically 5 years later by Bartlett (1950), who showed 
that sampling effects can distort the periodogram of a time series. 

However, it was not the end of periodogram analysis. Drawbacks were overcome [see 
Spectra Analysis (11.3)] and the concept, slightly modified, is again used to analyze a time 
series in terms of its frequency characteristics. The improvement has been mainly in the 
direction of smoothing the periodogram (or spectrum as it is known at present) in such a way 
that it corresponds more accurately to its theoretical values [Bartlett (1948), (1950); Blackman 
(1958)]. 

H. Time-Series Analysis 

If we are interested in the over-time behaviour of some phenomenon, we should observe 
and record its states at equidistant time intervals. This will result in a time series, as if was 
defined in Part I. It may be that our instruments are exact, yielding no measurement error, 
that there are no sampling errors, and that the output has always exactly the same pattern, 
i.e. there are no outside disturbances affecting the generating process. Such time series, called 
"deterministic", are very easy to deal with. The majority of time series, however, are not 
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deterministic. In real life situations, measurement errors, sampling effects and outside disturb-
ances do always exist and are intermixed with the output of the generating process. The result 
is a corrupted time series called "stochastic" (if we assume that the errors, white noise, or 
randomness involved have zero mean, a constant variance and are not correlated with each 
other). That is, the assumptions (6) and (7) are sufficient to make (5) a stochastic time series. 
It is only the contaminated, with noise series, we can observe and study. In fact, the major 
purpose of analyzing and modelling time series is to be able to separate the noise from the 
output, thus, obtaining an uncorrupted series which "truly" represents the outcome of the 
generating process. Communication engineers call this outcome "the message", while 
statisticians prefer the term "pattern". 

Once the separation of noise and message or pattern has been achieved, we can attempt to 
satisfy one of several objectives. We may, for example, be interested in part values of the 
generating process (intrapolation or smoothing) as in ballistics where we must know the 
past states of a target; we may want to know its present value (estimation or filtering) as in 
a receiver where the separation of the noise from the real message is sought; we may desire 
future values of the process (extrapolation or prediction), a typical example of which could 
be sales forecasting, or we may want to control the generating process through manipulation 
of "controllable" inputs. However, the achievement of the above four objectives will be 
accomplished as a byproduct of our ability to separate the noise from the observed values 
of the time series. 

In order to be able to "uncontaminate" a time series from noise, we must (a) fit a model 
to the series and (b) make sure that the model fitted can describe the series correctly. The 
process of model fitting is like a double-edged knife: it can result in a model which does not 
account for ail the existing noise, or equally bad, it can end up with a model which includes 
noise as part of its pattern. A Fourier series is a clear illustration of the inability of the model 
builder to draw the thin line between under and overestimation of the noise factor. He does 
not, in fact, have the ability to decide how many terms to include in order to specify the 
"correct" model. 

The process of model building for the different time-series models available will be discussed 
in the next section; needless to say, the choice of models is rather large. Time-series analysis 
aims at providing guidance so that the model builder will not wander indefinitely, trying to 
choose the right model, or specifying the number of parameters needed. Furthermore, once 
the model is chosen and its parameters estimated, time-series analysis of the residuals can be 
employed to determine whether or not the model chosen represents adequately the time series 
and consequently the generating process. This is an indispensable task which makes the 
utilization of time-series model practical. 

The above-mentioned aims of time-series analysis (dues for model specification, and tests 
for model adequacy) are fulfilled by two different but complementary methods : Auto-
correlation Analysis (AA) and Spectral Analysis (SA). The former is mainly used by statisticians 
and operation researchers; it analyses the data in terms of their time characteristics (existence 
of seasonality, length of seasonality, stationarity, possible types of generating processes) The 
latter is mainly utilized by engineers to discover the frequency response characteristics of the 
generating process (amplitude, frequency, phase). In addition, AA enables us to determine 
whether or not the series is a stationary one, while SA allows us to estimate the gain function 
of a filter. Both are extremely useful for reasons which can be seen later on in this section. 

Stationarity 

A time series is stationary if it fiuctuates around a constant mean. On the other hand, a non-
stationary series includes a longer-term secular trend. The advantage of dealing with stationary 
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series is that their statistical properties are independent of time. The implications are two-
fold : on the theoretical side, it is much easier to develop a theory of stationary, stochastic 
time series - in fact, it is the only theory in existence for such processes; from a practical 
point of view, it requires less work to estimate the parameters of a stationary model and, 
most important, once estimated, they are the same over a considerable time interval. 

On the other band, a large number of actual time series are not stationary; however, this 
does not present an insolvable problem, since there are several methods which, in fact, allow 
us to transform a non-stationary series into one which is indeed stationary. 

A non-stationary time series includes a trend element which, in practice, can be represented 
by a function of time, a polynomial of the form: 

Ti = a+bit+b2t 2+b3t 3+.... 	 (12) 

It is obvions that if we can estimate (12) and then subtract it from (or divide it into) the 
time series X„ the result will be a de-trended series; the theory of stationary stochastic process 
will therefore be applicable in such a series. 

Estimating Ti  in (12) can present a problem since we will have to decide on the degree of 
polynomial to be fitted. Furthermore, we must decide as to how many terms (observations) 
we would like to use in fitting the polynomial. It could, of course, be decided to use all terms 
but such a procedure is troublesome to update, since every time a new observation becomes 
available, the parameters of the polynomial in (12) must be re-estimated. Furthermore, the 
far distant observations will carry the same weight as the most recent ones. In other words, 
the fitting will not be responsive to current changes in trend. These disadvantages of fitting 
a trend to the entire range of observations have necessitated the utilization of polynomial 
trend fitting to a constant number of points. This implies the necessity of incorporating a 
new observation white dropping the least recent one, thus keeping the number of terms used 
constant. This approach is called the "method of moving average" by statisticians and "low-
pass filter" by engineers. 

(a) Moving Averages 

A polynomial of second or third degree is usually fitted to a constant number of terms, its 
value being subtracted from the middle value of the moving average (the number of terms is 
usually chosen to be odd). This process starts in the beginning of the series and "rolls" until 
the last term has been included in the average. The result is a de-trended series with n—m+ 1 
terms, where n is the number of observations, and m the number of terms included in the 
moving average. We can also have double moving averages (i.e. a moving average of a moving 
average) and triple moving averages (a moving average of a double moving average). For 
example, a five-term linear moving average takes the form 

X _,-EX,_3+Xt-2.+Xt-i+X, 
Mt-2 = 

5 
(13) 

where /1/",_ 2 denotes the moving average and t varies from 1 to n, where n is the total number 
(past, present and future) of time-series terms. 

The choice of the appropriate length of the moving averages cannot be determined by any 
set of rules; it is rather a subjective selection depending upon the specific time series or 
method. The better known moving averages are the Spencer's (1904) 15- and 21-point formulae 
[see Kendall (1946), pp. 371-394] about derivation and example of Spencer's and other types 
of moving-average formulae); and recently Henderson's 5-, 9-, 13- and 23-point weighted 
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moving averages [Shiskin et al. (1967)]. The Spencer's 15-point weighted1  moving average 

[see (14)], for example, can remove up to cubic trend and requires a total of 15 terms which 

remain constant as new values appear and old ones are thrown away: 

M;_7 — 0.009X, _14 — 0.019X, _ 13 —  0-016X, _ 12 ± 0.009X, 	+ 0.066X, _10 + 0.144X, _ 9 

+ 0.209X, _ 8 + 0.231X, _ 7 + 0-209X, _ 6 ± 0.144X, _ 5 + 0.66X, _ 4 4-  0.009X, _ 3 

— 0.016X,_ 2 — 0.019X,_ — 0.009X,. 	 (14) 

(b) Differencing 

First and second-order differencings are sufficient, in practice, to remove any kind of trend 

existing in a time series. A first-order difference will be: 

	

Xt = Yt —  Yt- 	 (15) 

where Yt  is a non-stationary time series, while a second-order difference takes the form: 

X, = Y, —  2 Y,_1 + 	2. 	 (16) 

Equations (15) and (16) act as high-pass filters on the trended data. 

In addition to non-stationarity in the mean of time series, we can also have non-stationarity 

in the variance. The latter can become stationary more easily by transforming the data into 

a logarithmic scale (we may sometimes have to transform the time series into a fraction of 

a power). 

Different methods deal differently with non-stationarity, ARMA schemes, for example, 

detect stationarity through the examination of the autocorrelation function. The Census II 

method of decomposition assumes that a trend exists and then applies Spencer's 15-point 

formula (the X-11 version of the Census II uses a Henderson's 5-, 9-, 13- or 23-point weighted 

moving averages depending upon the extent of the random composent) to remove it, while 

exponential smoothing methods can account directly for trend by introducing an appropriate 

number of polynomial parameters in the model. Whatever the procedure, the outcome should 

be obvious: time-series theory cannot deal directly with trend because it introduces spurious 

correlations, so it must be removed, or accounted for separately, before any method can 

be applied. We shall, therefore, in the rest of this paper, assume that the series is or has been 

converted to a stationary one. 

1. Autocorrelation Analysis 
Given the stationary time series: 

X, = X;+u, 	 (17) 

if we assume that u, is normally distributed, then X, can be described by its lower order 

moments (mean, variance, autocovariance and autocorrelation), whose estimates are: 

E X, 

	

E (X,)= t=1 	= 
n 

E (X,— X)2  

	

E ((X,—
X)2) t = 1 	= 62 

n-1 

n-k 

(X t  — )XXt +k —  X) 
E ((X,— XXX,,k  — X» = t 	= 1  

n = Yk 

(18)  

(19)  

(20)  

I The weights of the 15-term moving average result from a 5-term [like the one of (13)] of a 5-term, of a 
4-term, of a 4-term quadruple moving average. 
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n — k 

E ((X,— TO(Xt+k— «X» t I  1 (X  t XXX  t +k —  X) , 
k  

2 = P k• 
E((X,— X)2) 	= E (x t-x- ) 2 

= 1 
If we accept the convention to substitute 	 (20) and (21) become: 

n = k 
y, xtxt, t= 

Yk = 
n 

(21)  

(22)  

(23)  

n — k 
E XtXt  k  

Pk = r 1 

.2(?' 
t = 1  

Autocorrelations are measures of the relationship between successive values of a variable 
ordered in time, and as such, they are the backbone of time-series analysis. They vary from 
—1 to + 1, and because of stationarity, are even, i.e. p_ k  = pk. The utilization of the concept 
of correlation goes back to Poynting (1884) who attempted to ascertain the relationship 
between cotton and silk imports into England, and several other factors over time. However, 
it was Hooker, (1901) who, in order to measure the relationship between the marriage rate 
and the index of trade in Britain employed (21). Since then, autocorrelations have been used 
widely to determine the following: 

(a) Existence of Stationarity 

The autocorrelation coefficients of a stationary time series damp out to zero quickly. If this 
is not the case, the first difference (or some form of moving average applied to remove the 
trend) should be taken and the autocorrelations of the de-trended series found, If they damp 
out to zero quickly, it means that the differenced series is stationary; otherwise the second 
difference should be found. Any series met in practice need no more than two differences 
to become stationary. 

(b) The Length of Seasonality 

This can be detected by looking at a graphical plot of the autocorrelation coefficients. Unless 
the random component of (17) is extremely strong, it will be quite easy to recognize constant 
periodic patterns, if they exist, of course. If the length of the seasonal pattern is equal to T, 
then T, 2T, 3T, . . . should be the higher valued autocorrelation coefficients in relation to the rest. 

(c) Various Tests of Significance 

Ordinary tests of significance are not valid in time series because successive observations are 
not independent of one another [Bartlett (1935); Yule (1921)]. However, special tests which 
take dependence into account have been developed. The distribution of a single correlation 
coefficient was derived by Anderson (1942) who showed that it is normally distributed with 

zero mean and 1 — variance, while Dixon (1944) developed likelihood-ratio criteria for testing 

different hypotheses. This was followed by Bartlett (1946) who approximated the standard 
error to be: 

(Pk) = I 1  (1+ 2  
,k) k = 1 

where q is the highest order non-random autocorrelation coefficient. 

(24) 



(32)  

(33)  
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In the case of the series being completely random, (24) reduces to 

a (Pr) 	
1 	

(25) 

which is the standard error derived by Anderson. 
Quenouille (1949) extended the results to include joint distributions of P2, . • • , pk  and 

as well as partial correlation coefficients (see definition below), whose standard errors above 
order q are independently distributed and can be approximated by: 

6 (Or) = 	 (26) 

Finally, Box and Pierce (1970) developed approximate tests (x2) capable of determining 
whether or not several autocorrelation coefficients, say the first F, are significantly different 
from zero. This x2-test has F — p — q degrees of freedom (where p is the order of the Auto-
Regressive (AR) models, and q, that of the Moving-Average (MA) models). It can be 
approximated by: 

2 X2 = nEpi . (27) 

(27) can easily be used to determine whether the autocorrelations of the residuals are white 
noise. This will be true if the x2  calculated by (27) is smaller than the corresponding value 
for the degrees of freedom, from the table of x2  values, at some significant level. 

(d) Initialization of the Parameters of the AR and MA Models 

If both sides of (1) are multiplied by X1,„ and then expected values are taken [see Brown 
(1963) or Buys Ballot (1847)], we have: 

Yk = Wek- 1+ W2Yk- 2+ • • • + WpYk- p• 	 (28) 

If (28) is divided by a2  [see Surman (1965) or Carslaw (1930)], the result will be: 

Pk = W1P k- 1+ W2P k- 2+ • • • + WpPk- p• 	 (29) 

Substituting k = 1, 2, 3, ..., p, we have: 

Pi = W1 	+ W2P + W3P2 + • • • + WpPp - 
P2 = W.Pi +W2 	+ W3P 1 + • • • + WpPp-2 
P3 = W1P 2 + W2P 1 +W3 	 Wpp p _ 3  

Pp = WiP p- t+ W2P p- 2+ W3P p- 3 + + Wp 

(30) is a system of p simultaneous equations known as the Yule-Walker equations [Yule 
(1926); Walker (1931)] with p unknowns (Wi) whose values can be found by solving (30). 
These values are used as initial estimates for the AR (p) model to be fitted in the data. For 
an AR(1) model, for example, 

Pi- 	 (31) 

For an AR (2): 

Ex-f 	Pl (1— P2) 
rel 

1— Pi 

P 
W2 = 

P2 —  r 1 

1— pî .  

(30) 
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For an AR(3): 

1471, 

W 2 = 

Pl 
P2 
P3 

Pl 
1  
Pl 

P2 
Pi 
1 (34)  

(35)   

(36)  

1 
Pi 
P2 

1 

Pi 
P2 

pi  
1  
Pi 

pi 

P2 
P3 

P2, 
P2 
1  

P2 
Pi 
1 

1 
Pi 

P2 

1 
Pi 

P2 

pi  
1  
Pi 

pi  
1  
Pi 

P2 

Pi 

1  

Pi 

P2 
P3 

1  
P1 
P2 

Pi 
1  
Pl 

P2 
Pl 
1  

etc., where the bracket 11 denotes determinants. 
Similarly, initial estimates for an MA (q) process can be determined. Multiplying both 

sides of (2) by X,„ and taking expected values, we have: 

yk = (-0k+010k+1+ 0201+2+ ...±0q _ kVae2. 	 (37) 

Thus, the autocorrelation coefficients are: 

—0k1-010k4.1 +020,+2 +...+Og _A 
Pk = 	

1-1-0Î-E04 
for K= 1, 2, ..., g. 

Equation (38) is a system of q simultaneous equations with q unknown. However, unlike 
(30) it is not linear. Thus, solving for 0k  is more difficult and must be done recursively. How-
ever, there are tables [Box and Jenkins (1970), pp. 517-519] which provide initial estimates 
for low-order MA processes, given the autocorrelation coefficients. 

Partial autocorrelations are similar to partial correlations (measuring the degree of associa-
tion between two variables, keeping all other variables constant) and are defined as the last 
coefficient, 	of (29) for different values of k. Thus, the partial coefficient of time lag 1 
is given by (31), of time lag 2 by (33), time lag 3 by (36), etc. The partial autocorrelations 
are usually denoted as W11, W22, W33, W44, etc. 

Determining the Order of the ARMA Model 

By examining the partial and autocorrelation function we can identify a tentative model 
(AR, MA, or mixed ARMA) and its order (1, 2, 3, ..., p; 1, 2, 3, ..., q). In general, "whereas 
the autocorrelation function of an autoregressive process of order p tails off, its partial-auto-
correlation function has a cut-off after lag p. Conversely, the autocorrelation function of a 
moving-average process of order q has a cut-off after lag q, while its partial autocorrelation 
tails off. If both the autocorrelations and partial autocorrelations tail off, a mixed process 
is suggested. Furthermore, the autocorrelation function for a mixed process, containing a 
pth-order autoregressive component and a qth-order moving-average component, is a 

(38) 
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mixture of exponential and damped sine waves after the first q - p lags. Conversely, the partial-
autocorrelation function for a mixed process is dominated by a mixture of exponentials and 
damped sine waves after the first p-q lags" [Box and Jenkins (1970), p. 175]. More details 
and illustrations of how to identify an ARMA process and its degree can be found in Box 
and Jenkins (1970, pp. 53-84). 

2. Spectral Analysis 

The Fourier series described by (8) consists of a large number of harmonies of frequency 
i/T, where i corresponds to harmonie terms and T is the length of periodicity (1/T is called 
"the fundamental harmonie"). 

Each of the ith harmonie is orthogonal, with amplitude (value of ordinate at its peak or 

through taken from the mean value): ci 	af' +bî. Assuming a finite number of terms, n, 
the equivalent of (8) expressed in terms of its amplitude, c, is: 

n/2-0.5 
X (t) 	E ci  cos —

27ct i + (39) 
= 1 

where n is odd, and ai  is the phase angle of the ith harmonie defined as: 

bi  
tan ai - 

	

	 (40) 
ai  

The equivalents of (9) and (10) for ai  and b, are: 

" 
a i  = - E xt  cos 

27rt 	
(41) 

n t = 

" 	2nt 
bi  + - E X, sin — i 	 (42) 

nt= 1 	T  

/a? 	 (43) 

The maximum number of harmonie terms is 
2  
- -0.5 [see (39)]. 

The periodogram is a histogram-type graph with a function of ci  as its ordinate (different 
linear functions of ci  have been used by various writers), and the discrete frequencies i/T 
as its abscissa. Obviously, assuming no sampling or other types of errors, the highest value 

of ci, or any function of it, will correspond to, say, frequency -
r 

and period -
T

. The term Tir is, 
T' 

therefore, the length of hidden periodicity. Subsequent lower peaks of the ordinate will cor-
respond to secondary periodic occurrences. Such is the information one can obtain from the 
periodogram. 

A common way to define the ordinate of periodogram is through its intensity, I (i/T) of 

the fundamental frequency -1 . That is: 

n 
I (i/T) 	- 

2 
c.. 	 (44) 

An important property of (44) is that each term of the periodogram adds to the overall 

variance by y (-i  1, i.e.: 

and and 

n -0•5  (1) +.11(2) 	(2   
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(44) assumes that the frequencies —i are integer harmonica of the fundamental frequency 

n
_ —0-5 

Obviously, the frequency will vary as 1  —2 , —3, ..., 2 	. If we lift this assumption and 
T T 	T 

allow the frequency to vary continuously in the range of zero to 0.5 (where 0.5 is the highest 
frequency, called "Nyquist", corresponding to a period of 2) we obtain the spectrum of 
frequency f. Thus : 

2 	2 
I (.f) 

2 ) = — (a f  + b f), 0 f 

Expression (45) relates to the autocovariance function through equation (46), which expresses 
the correspondence between the autocorrelation and spectral functions [Kolmogoroff (1941); 
Wiener (1930); Wise (1955); Wold (1954)]. 

n-1 
I (f) = 2 (y0 + 2 E y, cos 27rf k) 	f 	 (46) 

k = 1 

 

That is, the spectrum is the Fourier cosine transform of the autocovariance function. 
Furthermore, (46) is the starting point on which spectral analysis is based and is also much 
easier to calculate than (41), (42) or (43), since the autocovariance or autocorrelation co-
efficients have been computed anyway. 

If we divide both Bides of (46) by the variance of the process 62  we will get the following 
standardized measure: 

a2 = 
S(f) = 2 (1 + 2 E pk  cos 27rf 

k = 1 

I ( f) 	 n- 1 

where S (f) is called the "spectral density function". (From now on, f will always vary con-
tinuously from 0 to 0.5, unless otherwise specified.) 

The spectral density function (47) is the Fourier transform cosine of the autocorrelation 
function and has two advantages over (44): (a) it is continuous over the entire range of 
frequencies, and (b) it can be applied as an expected value, which means that the amplitude, 
frequency and phase need not be fixed as in Fourier analysis. That is, (47) can be applied to 
subparts of data; thus obtaining several values for S (f), the average S (f) of each frequency 
can be plotted, resulting in a smoothed spectral density function [Bartlett (1948) (1950); 
Daniell (1946)] which has none of the disadvantages of the classical periodogram analysis. 
Smoothing the spectral density function is done through kernels or windows by which one 
can vary the "bandwith" of the estimates until an the information contained in the spectrum 
has been revealed. 

The smoothing of the spectral density function (47) is done by the application of: 
n-1 

S (f) = 2 (1 + 2 E 
k = 1 

k pk  cos 27rf k I 	 (48) 

(45) 

(47) 

k = 1 

where is called a "lag window" [Blackman and Tukey (1958)] and takes different values 
depending upon the number of groups, H, into which one would like to divide the data and 
the type of spectral window one would like to utilize. Obviously, H, the number of data 

subsets, can vary from 1 to —n +0.5; in the fast case, every subgroup includes two observations. 
2 

Jenkins and Watts [Jenkins and Watts (1968), pp. 239-243] have shown that the variance of 
S(f) reduces as H increases. However, for large H the bandwidth is small, which means smooth-
ing which hides the details of the spectrum. In addition, it introducesIbias. Thus, one] has to 
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compromise between smaller variance (large H) and too much smoothing or larger bias 
(small H). The compromise is not always easy to make, however, and depends upon several 
factors; nevertheless, there are some "empirical" rules one can follow [Jenkins and Watts 
(1968), pp. 258-298]. 

The number of subgroups, H, into which the data must be divided, should be decided upon 
by examining the autocorrelation function. H should be large enough to embrace all non-
zero autocorrelations. A set of three different H values, H„ H2  and H3, should be chosen 
to cover a fairly wide range of subgroups. This can be done by fixing the ratio H3/H1  to around 
4. Another factor to be determined is the spacing of the frequency f. It should be equal to 
0.5/F, where 0.5 is the highest frequency and F = 2H or F = 3H. The smoothed spectral 
density function can then be calculated by: 

F 	 H-1 
S (h) 

h 
 E 

0 
 2 (1 + 2 

k 
 E ici)k  cos 2n —hk). 	 (49) 

= 	= 1 

(49) should be used to calculate the smoothed spectrum for H1, H2 and H3 which can be 
plotted on the same graph with the bandwith corresponding to each H. 

The final choice of H will be made for the subgroup Hi  which provides enough details and 
cannot be considerably improved (in terms of more details) by decreasing its bandwith. 

A final consideration is the choice of Ck  whose value is specified by what kind of spectral 
window one would like to use. For example, in Bartlett's spectral window, the lag window 
Sk is: 

h 
(k= , —

H
. 	 (50) 

Thus, if H = 3, the value of çk in (49) will be: 
F cos 	, 

•S(--h) 	E 2 (1 + 2 (-2 	 p cos 2ir 2—h 	 (51) 
F 	h=o 	 3 Pi 	

" f 	3  2 F • 

A survey of the different types of windows, as well as review of spectral methods, in general, 
can be found in Jenkins (1961), pp. 145-148), (1956, pp. 11-16) and Jenkins and Priestley 
(1957, pp. 5-7). 

It was said that the spectrum is the Fourier transform of the autocorrelation function 
[see Harrison (1965)]. The opposite is also true; therefore, in mathematical terms, knowledge 
of either the autocorrelation of spectrum functions is equivalent. It depends upon the user 
and his need to decide whether to utilize one or the other. Statisticians are usually inclined 
to calculate the autocorrelation coefficients, arguing that they are much simpler to compute, 
easier to interpret and provide as much information as the spectrum. Furthermore, they say 
that one needs to know the autocorrelation function before one can calculate the spectrum; 
so calculating the spectrum and going through the laborious and inexact process of con-
structing windows is a waste of time. 

Engineers, on the other hand, insist that the spectrum is a more natural quantity to compute 
because it expresses a time series in terms of its frequency response which must be known 
for design purposes. They say that statisticians play down the value of spectral analysis mainly 
because they cannot think in frequency terms. Whatever the truth, the fact is that spectral 
analysis has found little use in the social sciences in general, mainly because it is troublesome 
to calculate and interpret. A few exceptions are those of Granger (1964), Burman (1965), 
Nerlove (1965), Rosenblatt (1963), [also see Grether and Nerlove (1970) for discussion], 
ail of which are in the area of decomposition. However, it should be emphasized that the 
autocorrelation and spectral functions are related to each other, and that knowledge of one 
implies a knowledge of the other. 



n-k 
E x(i)tx(i)t+k  

ptik  = 	t = 1 n   	 k = 0, 1, 2, ..., n —1 	 (57) 

t 	0) • 
n+k 

E X(i,tx(Dt_k 
P(ij)k = 	1  k = 0, —1, —2, ..., —n+1. 	(58) 

X 
t=1 

A (i)t 
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In engineering, spectral-analysis applications centre on the fact that the spectra of the 
input and output of a linear system are connected by (52), where G (f) is the gain function 
between input(s) and output(s). 

Ylk (f) = Y2k (f) G2  (f). 	 (52) 

If both the input and output spectra are known, then the gain function can be easily 
estimated as: 

G2 (f)  Ylk (f ) 	 (53) 
Y2k (f) 

Similarly, if the spectral of the input is known, together with the gain function, the spectral 
of the output can be computed and subsequently used to design the impulse response function 
(the coefficients of (1), Wi) of linear filters. As such, spectral analysis plays a critical role in 
univariate and multivariate linear-system designs. 

Multivariate Time-Series Analysis 

So far, we have been concerned with the autocorrelation and spectral functions of single 
series; however, the analysis can be extended to cover m time series: 

X(;)„ j = 1, 2, ..., m. 	 (54) 

The covariance between the X(0, and Xtn, series will be denoted by y(wk  and will be equal 
to: 

n-k 
X (i)tX (ot k  

t = 1 	k = 0, 1, 2, ..., n-1 7(ij)k = 

n+k 
E x(,),x,,,t _ k  

yotot  = t 1 	k= 0, —1, —2, ..., — n +1 

where 	is expressed as a deviation from its mean. 
The autocorrelation between series X(ot  and Xcht  will be called "cross autocorrelation", 

or just "cross correlation", and will be equal to: 

n 
(55)  

(56)  
n 

X 2 
t‘_, 1 	()t 

The cross correlation has ail the properties of the autocorrelation function and in addition: 

P(ij)k = P(ji)-k• 	 (59) 

Thus, the cross-correlation function needs not be symmetrical. Like the autocorrelation 
function, it can be used to analyse a univariate set of data, whereas the cross-correlation 
function can achieve the same results for multivariate sets. Its use is mainly directed to 
transfer-function models where the dynamic relationship between inputs and outputs of 
different variables is analyzed. Finally, the cross-spectral function is similar to the univariate 
spectral in the sense that it is the Fourier transform of the cross-correlation function. However, 
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the formulae involved are more complicated; the interested reader should be referred to 
Jenkins and Watts (1968, pp. 363-412). 

III. Time-Series Method 

Time-Series Methods can be divided into five categories (see Introduction) of Autoregressive 
and Moving Average (ARMA), Filtering, Smoothing, Decomposition and a category including 
some models not otherwise classified. Wold's decomposition theorem (1954) as expressed in 
equation (11) is the basis of all categories, with the exception of decomposition methods 
and some individual models which are based on other considerations. 

The major task of time-series methods is to separate the noise from the observed time 
series in such a way that the pattern or message will become known. Thus, the characteristics 
of the generating process will be revealed and could, consequently, be used for smoothing, 
filtering, predictions or control. Each of the categories separates the noise and pattern through 
its own procedure; even then, there are considerable similarities. ARMA models are the mort 
general of all the categories since they assume that the last term of (11) is not important in 
determining the pattern of the series which is therefore approximated by: 

Xt = E wixt _ i — E oier _i+ et. 	 (60) 
= 	 = 

Whatever is left between X, and the first two terms of (11) will be considered the residual 
et. The aim of ARMA models is to choose the appropriate order of p and q in such a way 
that the residual error e, is random. When e, is tested and shown to be random, the separation 
is assumed to be complete and the pattern is expressed as an ARMA (p, q) model. 

Filtering models are autoregressive in character only, that is: 

Xt  = E wixt _ i + et. 	 (61) 
o 

The separation of the noise is done in two steps: first some initial estimates, which isolate 
as much of the noise as possible, are made and subsequently recursive algorithme which 
continuously update the parameters W, are applied to make et  as random as possible. 

Smoothing models, too, are mainly of moving average type. They smooth (average) residual 
error values of many periods according to some exponential weighting scheme. The outcome 
of the averaging (assuming non-systematic errors) will result in errors close to zero, which 
will therefore reveal the true pattern. Smoothing models are special cases of ARMA ones; 
however, there is a major difference: whether (60) can be utilized to fit any time series, there 
is not a single smoothing model, but many. Thus, the appropriate model has to be chosen 
and utilized for each specific series. 

The principle of decomposition models is different from those already discussed. It is based 
on the assumption that economic or business time series consist of three main subpatterns 
or components. These are Trend (T), Seasonality (S) and Cyclicality (C), in addition to 
Randomness (R). Thus, if we assume a multiplicative relationship: 

X,— TxSxCxR 	 (62) 

the objective of decomposition is to isolate each of the three components of (62) until the 
remaining residual (R) becomes white noise. The process of "breaking down" Xt  into T, S 
and C is done differently by the various methods which will be discussed later. However, the 
basic aim is always similar in terms of isolating each one of the three components as accurately 
as possible. 

Transfer-function models, finally, are similar to ARMA ones, except that they apply to 
multiple, rather than single, time series. 
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When the noise of a time series has been eliminated, the uncontaminated series can be 
used to approximate past, present and future values of the series or to control the generating 
process. These are the end results of utilizing time-series methods and will be discussed in 
section IV after a survey of the five categories of methods has been completed in this section. 

1. Autoregressive and Moving Averages (ARMA) Schemes 

Yule (1927), Walker (1931) and Slutzky (1937) introduced the concept of autoregressive/ 
moving-averages schemes. It was the work of Wold, however, which proved the theoretical 
validity of the method and devised general representation for times series. Wold's contribution 
in this field was of the utmost importance and in many respects he should be considered the 
founder of ARMA models. Since then several major contributions have been made, which 
have enabled the practical utilization of ARMA schemes. These contributions have been 
achieved in two directions : first, in devising an efficient estimation procedure for the AR, 
MA, and mixed ARMA processes, and secondly, in extending the results to include seasonal 
time series. 

On the estimation Bide, to which Wold did not give much consideration, Kolmogoroff 
(1941) suggested general solutions to the smoothing and prediction problem. It was, however, 
Mann and Wald (1943) who used the method of maximum likelihood estimation for the 
solution of autoregressive processes. They extended the method of maximum likelihood 
estimation used in regular regression to include the parameters of autoregressive processes. 
The difficulty existing in the latter category is, of course, that the variables are not independent 
of one another. Furthermore, Mann and Wald showed that on the limits the maximum 
likelihood estimates are normally distributed. Finally, they discussed their belief that the 
estimates have the same optimal properties as when independence among variables does 
exist ; they did not, however, provide proof of the last statement. Whittle (1953) extended 
the concept of ARMA models to cover multiple time series, white Durbin (1959; 1960), 
devised efficient methods of estimating the AR and MA parameters. Later, Walker (1962) 
extended the result to mixed ARMA schemes. 

More recently, Jenkins and Watts (1968) and Box and Jenkins (1970) proposed models 
capable of dealing with seasonal series, devised efficient computational formulae for digital 
computers and provided procedures to deal with any kind of series, whether stationary or 
not. Box and Jenkins have greatly contributed to making ARMA models more widely 
accepted by those other than specialists in control engineering or statistics. This reason, 
together with the purely theoretical contributions, has resulted in their name being used 
synonymous with autoregressive and moving-average models. However, Box and Jenkins 
have been neither the originators nor the most important contributors in this field. This has 
also been true with Kalman whose name has been used synonymous with filters, although 
there have been others who had made significant contributions in the field [see Anderson 
(1971), p. 98; or Sorenson (1973), p. 66]. 

The Box-and-Jenkins procedure in utilizing autoregressive/moving-averages schemes is 
applied in two stages. The first stage includes a general class of model called "integrated 
autoregressive moving-average schemes ". The models included can apply to seasonal or 
non-seasonal data as well as stationary or non-stationary series. The most general model can 
be seen in equation (63), where any parameter can be zero, thus allowing a more specific 
model. The second step is to identify an adequate model to be fitted into the series. This is 
done through an examination of the autocorrelation and partial-correlation functions (see 
Figure 1), which completes Stage 1. Once a tentative model has been identified, its parameters 
are estimated, and its adequacy is tested against the real time series. The residuals, that is, the 
difference between the actual and the predicted by the tentative-model values, are analyzed 
through autocorrelation to determine if they are randomly distributed. If they are, this will 

44/1—D 



46 

k 

1 
Autocorrelation 	function 	of an 	AR(1) 
mode! (exponentially-damped autocorrela- 
tion function, cut-off after k time tags). 

Autocorrelation 	function 	of 	an 	AR(2) 
mode! 	(exponentially-damped 	autocor- 
relation function, cut-off after k time Tags). 

+1 +1.  

0 or 0 
1 

k Ir k 
-1 -1 
Partial-autocorrelation function of an AR(1) Partial-autocorrelation function of an AR- 
model 	(one 	partial 	autocorrelation 	sig- (2) 	mode! 	(two 	partial 	autocorrelations 
nificantly different from zero). significantly different from zero). 

+1 

-1 

+1 

-1 
Autocorrelation function of an MA(1) 
mode! (one autocorrelation significantly 
different from zero). 

Autocorrelation function of an MA(2) 
mode! (two autocorrelations significantly 
different from zero). 

Partial-autocorrelation function of an MA 
(1) mode! (exponentially damped auto-
correlations, cut-off after k time Tags). 

Partial-autocorrelation function of an MA-
(2) mode! (exponentially-damped auto-
correlations, cut-off after k time Tags). 

Figure 1. Examples of model identification through the Autocorrelation and Partial Autocorrelation Functions. 

imply that the tentative model is correct, and therefore, should be used for forecasting or 
control purposes. Otherwise, an alternative model should be identified and subsequently 
estimated, because the one initially selected is not an adequate representation of the time 
series. Through this process, we will eventually find a mode!, whose residual will be random 
noise and which could be used in forecasting or control. The Box-and-Jenkins approach, 
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through this step-by-step procedure (see Figure 2), provides sufficient dues for identification 
of an initial model and then at later stages, gives us sufficient information to know if the 
appropriate model has indeed been chosen. 

Postulate General 
Class of Models 

/ 
Identify Model to 
be Tentatively 
Entertained 

Est imate Parameters 
in Tentatively 
Entertained Model 

Diagnostic Checking 
(is the model 
adequate?) 

Stage I 

1 
1 
Stage 2 

No 

3■_. ---J 
-- 	'"es  
Use Model for 
Forecasting 
or Control 

Figure 2. The Box—Jenkins methodology to ARMA models. 

The Box-and-Jenkins approach can deal with seasonal time series by specifying a seasonal 
parameter in either the autoregressive Os, or the moving-average aide, O: 

(1+ 01.13+ 02B2  + ...+ 0 ,,BP)(1 + OsBs) X, = (1-01B-02132  — ...-0,13g)(1-0,Bs)e, (63) 

where 
BX, = X j _ 1  

B2Xt = Xt-2 

B3Xt  = Xt  _ 3 

. 	. 	. 

. 	. 	. 

. 	. 	. 

BmX, = X,_„„ 

(63) can include any number of short (i.e. (1 —B) X„ (1-2B+ B2) X„ etc.) or long 

(i.e. (1 —Bs) X„ (1 —2Bs +.1.3s+ I) X„ etc.) 

differences so that X, will be stationary. That is, (63) can deal with short-term non-stationarity 
(that is, month-to-month) or long-term non stationarity (that is, year-to-year) by taking the 
appropriate number of short or long differences. In final analysis, the Box-and-Jenkins approach 
can deal with the most general of the time-series cases. It is the generality and theoretical 
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vigorousness of the method which has resulted lately in widespread interest in the method 
and its applicability. 

Transfer-function models are generalized presentations of (63), when there are more than 
one variable included in the equation [see Barham and Humphries (1970)]. Transfer-function 
models involve the utilization of the cross-autocorrelation and cross-partial-autocorrelation 
functions and considerably more complicated procedures for model identification and 
estimation than those already described for univariate time series. The major application of 
transfer-function models is in the area of control and the forecasting with leading indicators 
[Box and Jenkins (1968)]. 

2. Filters 

The pioneer work of Wiener (1949) and the independent but similar developments of the 
Russian mathematician Kolmogoroff (1941) have provided the starting point and basis of the 
modern filtering theory. Both Wiener's and Kolmogoroff's works centred around ways of 
estimating the white noise, u„ in (64), so that the original message, or pattern, X;, could be 
recaptured. (Wiener treated the continuous case while Kolmogoroff dealt with discrete time 
series.) They developed an estimation procedure in the frequency domain which allowed the 
design of optimal filters operating on a continuous basis. Their work was an extension of 
Fisher's (1912) estimation procedures but instead of being based on the maximum likelihood 
function, it was based on the frequency response characteristics of a system. 

X, = X; + ut. 	 (64) 

Recapturing X; can be achieved by solving the integral Wiener-Hopf equation (65), for 
the weighting function (or impulse-response function) W (v). However, such a solution is 
difficult to obtain; thus the applicability of the Wiener-Kolmogoroff filters is limited. Originally, 
the solution was obtained by using spectral factorization. 

+œ 

-œ 
where y denotes, as before, the autocovariance. 

Levinson (1947) provided some discrete approximations in order to obtain W (v) in (65). 
Furthermore, he devised recurrence equations to obtain updated estimates of W (y) when new 
data became available. However, the matrix inversion still required is computationally 
impractical when there are many observations involved. Zadeh and Ragazzini (1950) simplified 
the problem of solution at least for the finite memory case, independently by Bode and 
Shannon (1927) and they provided a simplified approach for the solution of the Hopf-Wiener 
equation by introducing the idea of "shaping" filters. This was followed by Booton (1952) 
who dealt with non-stationary time series and by several others who discovered and theoretically 
proved relationships between the weighting function and the variance of the white noise, u„ 
It was, however, the work of Kalman (1960) and Kalman and Bucy (1961) who broke new 
ground in filtering theory and opened the road to the widespread utilization of filters in a 
variety of engineering applications. 

Kalman and Bucy cirumvented the problem of solving the Wiener-Hopf integral equation 
by transforming it into its equivalent differential equation. Then, instead of an analytic 
solution, obtained laboriously1 through the; calculus:of variation, they passed the burden of 
solution to the computer. Furthermore, they introduced efficient recurrence equations which 
make the updating of the equations particularly easy by a digital computer. Unlikely Wiener 
and Kolmogoroff who worked in the frequency domain, they involved their system description 
in the time domain and introduced state-space notation which offers considerable conceptuel 
and computational advantages. 

y„x.(k) = W (v)yx), (k — v)dv 	 (65) 
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The Kalman filtering system is described by equations (66) and (67) and can be solved by 
equations (68), (69), (70) and (71). 

X1+1 0/+1,/21+Z/ 	 (66) 

Xk  = Hk X;,+U k 	 (67) 

where 	Xk' is the true state of the system (uncorrupted of noise); 

Zk  is the white noise affecting the linear system at time tk  (process noise); 

Ok+1,k is the transition matrix relating Xk to X k+i ; 

Xk  is the measurement (actual) data obtained at time tk ; 

Hk  is the observation matrix at tk ; 

and 	uk  is the white noise caused by measurement errors at time tk  (measurement 
noise). 

An estimate of Iikik  is computed from the data X0, X1, X2, ..., Xk  so as to minimize the 
mean-square error. This is accomplished by the utilization of Xk  and all previous estimates, 

1-11k-1, île -2Ik- 25 • • • 9 of Xk. 
That is, 

= Ok,k-1-ele -11k-1+ K (X k —  HkOk,k-1I;c-11k-1) 	 (68) 

where K is calculated by (69) and is chosen in such a way as to minimize the mean-square 
error in the predicted estimate. 

Kk  = 	1Hk (11  kP kik - lek+ Rk)-  I 	 (69) 
where 

Pk1k-1 = Oklk-1Pk-1Pk- 1/k - 1 ek,k-1+ Qk-1 	 (70) 

(Q: covariance of Zk) 
and 

Pklk = 	KkHkPk1k-1• 	 (71) 

Equations (68), (69), (70) and (71) are known as the Kalman filter, although it was reported 
by Sorenson (1968) and Anderson (1971) that others had produced similar results before 
Kalman. In particular, they refer to a paper by Swerling (1958) which, in all but a quite 
insignificant respect, was identical to the later work of Kalman and Bucy (1961) on discrete 
time filtering. However, as with Box and Jenkins, Kalman and Bucy received most of the 
credit mainly by making their respective approach known to wider audiences. 

The Kalman-Bucy filters exhibit a smaller variance than the Wiener-Kolmogoroff but they 
are not always easier to implement than the latter [Singer and Frost (1969)]. Apart from this, 
the Kalman-Bucy approach is different from that of Wiener-Kolmogoroff in four major 
respects: 

(a) The Wiener-Kolmogoroff theory requires stationarity whereas the Kalman-Bucy does 
not. 

(b) The Kalman-Bucy filters demand that the process-noise and the measurement-noise 
covariances be known. The Wiener-Kolmogoroff does not. 

(c) The Kalman-Bucy method requires detailed knowledge of the transition matrix Ok+i , k  
while the Wiener-Kolmogoroff requires knowledge of the cross autocovariances yxx  (k) 
and yxx  (k) (the autocovariance). 

(d) The Kalman-Bucy method requires initial estimates of ail system parameters. 

(a) is an advantage for the Kalman-Bucy approach, (b) is for the Wiener-Kolmogoroff, 
(c) depends upon the information available while (d) can be a negative factor for the Kalman-
Bucy approach. 
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Requirements (b) and (d) above have been partially resolved by obtaining on-line estimates 
of both the noise and system parameters. Mehra (1971) distinguishes four different approaches 
to get round the problem (linear-least square, stochastic approximations, maximum-likelihood 
correlation techniques) and provides ways of efficient estimation [Mehra (1970)]. A survey 
of such techniques can be found in Sage and Husa (1969). 

Finally, the utilization of filters outside engineering of space applications has been limited 
mainly because of (b), (c) and (d) above. The few exceptions [Harrison and Stevens (1971); 
Schneeweiss (1971)], however, have been extremely promising and should initiate a wider 
research effort of how to profitably apply filters to such areas as business or economics where 
there is a great need and unlimited potentials of computationally easy procedures. 

3. Smoothing models 

Smoothing models are moving average in character although there are special cases involving 
parameters which weight exponentially past values. Their main advantages are simplicity 
and low utilization cost. Sometimes, they are referred to as "adaptive", implying their ability 
to adjust their smoothed value depending upon the magnitude and nature of the error [see 
equation (75) or (76)]. Finally, smoothing models are of infinite memory type because of 
their ability to store ail past information in a single, or a few, summary measures. Equation 
(73) is, in this respect, an expansion of (72) and shows how the measure î 	contains ail 
information from the second term backwards. On the negative Bide, there are many smoothing 
models available which implies that (a) the right smoothing model must be selected, and 
(b) once a change in data has taken place it must be sensed, so that another model can be 
employed. 

Exponential smoothing was first introduced by Holt (1957) and was elaborated and widely 
applied by Brown (1959) and Holt et al. (1960). Other important contributors in the 
area have been Winter (1960), who introduced the seasonal-exponential-smoothing model. 
Brown and Meyer (1963) who presented a theoretical backing of the smoothing methods, 
Theil and Wage (1964) who express smoothing models stochastically and therefore show how 
the weights can be selected in such a way that the mean-square-prediction error will be 
minimized. Finally, Trigg (1964) introduced tracking signais to indicate when the character-
istics of the process have changed significantly and Harrison (1965) elaborated Harmonie-
Smoothing models. Next we shall examine the major exponential-smoothing models now in 
existence. 

Single Exponential Smoothing 

This smoothing can be expressed through equation (72) which can by itself become the fore-
casting equation too. 

At  = aX,_ 1+(l—a)g,_ i 	 (72) 

Ft." /t  

where 1;4.1  denotes forecasting for period t+ 1. If (72) is expanded by substituting the value 
of ît _ i, we have: 

= aX,+ a (1—a) X,_ + a (1—a)2  X, 2  + a(1 — a)3X,_ 3+ ... 	 (73) 

or 

(1 — a) E 	 (74) 
o 

a can be chosen to minimize the sum of squared errors between I; and X,. 
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To show the idea of adaptiveness we can write (72) by rearranging terms as: 

Xr = 	+a (xt- 	i) 	 (75) 

or 
Xt  = 	+ a/et-1- 	 (76) 

Since X,_ i —f t _, is the residual error, (76) shows how the smoothed (or forecast) value 
f t  will adapt depending upon the direction of error. 

Non-Stationary Exponential Smoothing 

Equations (72) or (73) can be used for stationary data only, a fact which can be seen by taking 
expected values of both sides of (72), in which case E t) = X. To deal with non-stationary 
data which can be linear, quadratic, cubic, etc., special models have been developed to account 
for each non-stationarity correspondingly. 

Holt's Two-Parameter Linear Model 

Holt (1957) proposed the following model: 

Xr = 	t- 1+ (1—  c()(£ t- + bt - i) 	 (77) 

where 

bt fl(ît—lt-1)+(1 —fl) -1 	 (78) 

and 
FH.,=Xt +r), 	 (79) 

where i is the number of periods ahead (lead time) we would like to forecast. 

Brown's One-Parameter Linear Model 

Brown's (1959) model is similar to Holt's, except that there is a single parameter for the basic 
pattern as well as for the trend smoothing. Harrison (1965, p. 111) concludes what many had 
suggested: that Brown's method is at least as good as Holt's and it should therefore be 
preferred for non-seasonal forecasting. Brown's model can be expressed through the following 
three equations: 

Xt = aXt 1+(1— cet-1 

= od-t + (1  — o) t- 

and where Xt  is a double exponentiel smoothing and 

Ft+, 	X, + 	(I,— X,)r. 
1—a 

Brown's One-Parameter Quadratic Smoothing 

Quadratic smoothing should be utilized when there is a higher order trend than linear. The 
equations involved are the following: 

St  = aX,+ (1 — a)S,_ i 	 (82.1) 

St  = oSt + (1  — o)St - i (82.2) 

S = ot, + (1 — cc),''t - i (82.3) 

Ft+r = F1 +rF2+1r2F3  (82.4)  

(80)  

(81)  
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where 
F1  = 35, — 3,, 

F 

+ S, 

((6-5a) ,,— 

Ct — 25, + St) 

(10 — 8a) & + (4 — 3cx)St) 

(82.5) 

(82.6) 

(82.7) 

ce-- 
2  = 

2(1 	(x)2 

(x2 
= F3  

(1 — x)2  
and 

St, St, St  are simple, double and triple smoothing correspondingly. 

Similarly, cubic smoothing will involve quadruple smoothed statistics and include four 
smoothing equations. Quadratic smoothing, however, can deal with almost ail practical 
cases. 

Higher orders of non-stationarity will require similar formulae with higher algebraic 
complexity. Their development, a generalized approach, formulae, and examples, can be 
found in Brown's (1963) book. 

Winter's Linear and Seasonal Model 

Winter's (1960) model is an extension of Holt's; it includes an additional parameter as 
well as an extra equation for seasonality. Thus, we have: 

X 
g't = 

	

	 + (1  — Y)(t- + bt- 1). 	 (83) 
- L 

where L equals the length of seasonality. 

f (g t—g t 1)+ (1- - Mbt-i 	 (84) 
and 

= y = + (1 — 'Y) St-L 	 (85) 

In order to forecast we apply (86); 

Ft-Fe = ()?t+tbt) st-L+t• 	 (86) 

In addition to Winter's three-parameter models, there are single-parameter models capable 
of dealing with both seasonality and trend: however, they are less known, although according 
to Groff (1973), they are at least as accurate as Winter's multiparameter model. 

Harrison's Harmonie Smoothing Model 

Harrison's (1965) model combines characteristic of decomposition methods, harmonie 
analysis and smoothing. It first removes a linear trend by an L-month moving average (if 
the simple moving average is converted into a weighted one, higher trends than straight 
lines can be dealt with. This has already been done in some programmes [sec Harrison (1965), 
p. 134]. It then divides the moving average into the original data to obtain crude seasonal 
coefficients, Si, the average of which is forced to L and then used for the following calculations : 

Smoothed Seasonal Coefficients 

This is done through (87): 
L 

	

= 1+ E (ak  cos kxi  + bk  sin kx;) 	 (87) 
k = 1 
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where 

ak  = -
2 E si  cos kx;  
L i=1  

2 L  
bk  = - E si  sin kx;  

L 
and 

2 (j-1)n/12- lc  

while the summation of (87) includes only those harmonics, ak  and bk, which are statistically 
significant. 

The updating of the seasonal factors 	can be achieved on a continuous basis as new 
data becomes available. Given a new data point, X„ for example, we calculate 

Xt  
Pt  

M 

where Mt  is the general level of the series at time t (trend-cycle). 
We can then calculate updates for (88), (89) and (87) as follows: 

ak  (t) = ak (t-1)+ 	(Pt-Si(t -1) cos kx; 	 (90) 

bt,(t) = bk(t-1)+ 
2.5
— (Pt -Sit - 1) sin kx; 	 (91) 

and 

(t) = S; (t-1)+ 	(P • -S .(t -1) 
k  E1 

 cos (xi —xi). 	 (92) 
" =  

(The notation for equation (90) to (92) has been slightly modified to accommodate the sub-
script i - denoting a seasonal period - and t denoting time.) 

In addition to the multiplicative model just described, Harrison developed formulae for 
the additive case. 

Tracking Signais 

Tracking signais aim at automatically monitoring the forecasting results in order to ensure 
that they remain in control, i.e. they fluctuate around zero. Brown (1963) introduced a tracking 
signal which could be used in association with the single exponential smoothing of (72). 
Its form is : 

TS, = 
Mt  

where TSt  is the tracking signal at period t. 

Et = E ei  
i= 1 

and is updated by: 
t-1 

	

Et = E ei+e, 	 (94) 
= 

and Mt  is the mean absolute deviation which is updated by: 

	

Mt =Y I et I +(1 -7) 	 (95) 

Trigg (1964) improved (93) by defining 

Et = yet+(1-Y)Et-i. 	 (96) 

(88)  

(89)  

(93) 
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(96) fluctuates between —1 and + 1, and has a standard deviation of 

1.2a 

-\/2a — a2 	
(97) 

(97) allows us to establish confidence intervals and to know when the forecasting errors are 
out of control. Furthermore, it is stable and standardized between —1 and + 1. 

Trigg and Leach (1967) added another feature in the usage of equation (93) which greatly 
improved the response rate of exponential smoothing. They proposed that the smoothing 
constant a should be equal to the modulus of the tracking signal. Thus, 

= TS, I. 	 (98) 

(98) increases the value of a when the error becomes large, white decreasing it in cases where 
they are small. However, this is exactly the process in which one needs to have a more accurate 
and responsible smoothing system. Thus, (93), (95), (96) and (98), can be used in conjunction 
with (72) and achieve a truly adaptive forecasting method which is easy to compute and 
update and requires little data in order to utilize. However, it may be that the resulting 
behaviour of the forecast has some undesirable characteristics, as it was pointed out in 
[McClain and Thomas (1973)]. 

Trigg and Leach attempted to utilize the idea of (98) in higher order smoothing models 
but with less success — the model was often unstable. Furthermore, there have been other 
efforts [Rao and Shapiro (1970); Farley and Hinich (1970)] which, however, have been 
more complex to utilize and less successful than those of Trigg (1964) and Trigg and Leach 
(1967) in their attempts to track significant changes in the data. 

4. Time-Series Decomposition 

Time-series decomposition is one of the oldest methods in the area of time series. It was 
originated around the beginning of this century and initiated from two different directions: 
in the first place, it was recognized that in order to study the serial correlation within or 
between variable(s); it was necessary to eliminate the spurious correlation present because 
of the existence of trend. Poynting as early as 1884, attempted to eliminate the trend as well 
as some seasonal fluctuations by averaging prices over several years. Its purpose was to 
eliminate both graduai and more rapid movements as much as possible from the data. Hooker 
(1901) followed his example but he was more precise in the way of eliminating trend. He was 
followed by Anderson (1914) and Spencer (1904) who generalized the procedure of trend 
elimination to include higher order polynomials. On the other hand, there were the economists 
who were worried about the effect of depressions and who wanted ways of predicting them. 
By doing so, they felt that the elements of economic activity should be separated so that 
changes in the business cycle could be isolated and hopefully known beforehand. In France, 
a committee was appointed, which in 1911, presented a report [Government Report (1911)] 
dealing with the reasons and causes of the economic crisis of 1907. It introduced the idea 
of leading and coincidental indicators [Government Report (1911), p. 38] and attempted 
to separate the trend from the cycle so that the movement of the latter could be followed. 

The method was elaborated upon in the USA, and the idea of constructing barometers of 
business activity was developed. Furthermore, an attempt to separate the seasonal fluctuation 
from the rest of the components was made [see Copeland (1915), pp. 554-556]. The process 
of decomposition was refined by Macauley (1930) who, in the 1920s, introduced the ratio-
to-moving-averages method, variations of which are the most widely used today. It consists 
of three basic steps: first, the calculation of the seasonal factors, which are the ratios of the 
actual to a 12-month moving average, then, through some form of averaging the seasonal 
factors, we obtain 12 seasonal indices; secondly, the trend is calculated for each point and 
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thirdly, the trend is divided into the moving averaged data with the result of obtaining the 
cyclical factors. 

That is, assuming a multiplicative relationship (an additive model will behave in a similar 
way), whose seasonal pattern is of 12-period duration, we have: 

Xt  = S,T,C,R, 	 (99) 

where St  is the seasonal component, 

T, is the trend component, 

Ct  is the cyclical component, 

and 	R, is the random component, 

the first step consists of: 

Mt = TtCt 	 (100) 

where Mt  is a 12-month moving average of Xt  which of course eliminates the seasonality 
and a great deal of randomness by the process of averaging itself: 

X 	
SIT t t t 	S1R1 	 (101) 

Mt 	TiC, 

where gt  are the seasonal factors. 
Through averaging (101) we eliminate the randomness R1; so the remaining can be con- 

sidered the seasonal indices, i.e. 
= St 	 (102) 

Step two is: 
Z=a+bt 	 (103) 

(or any higher order trend fitting), where 	is the trend line at each point t, fitted to the 
original data Xt, and a and b are the least-squares regression coefficients. 

Finally, in step three, we divide (103) into (100) to obtain et, an estimate of the cyclical 
factors, i.e. 

et= 
T
`Ct  = Ct. 	 (104) 
Tt 

Equations (102), (103) and (104) present, therefore, the decomposition of original time 
series X, into seasonal, trend and cyclical elements, correspondingly. 

The ratio-to-moving-averages is the basis of the Census II method which has been developed 
and used all over the world, mainly by governmental agencies. In 1954 the manual procedure 
was replaced by a computer program (Census I) which was modified and enlarged in 1955, 
and sine then known as Census II. Since 1955 there have been several variants of Census II 
starting from X-1 to the currently used X-11. They are different from Macaulay's original 
method in that (a) they use improved moving-averages schemes in order to compute the 
seasonal factor and the trend-cycle curves, (b) they replace the values lost in the beginning 
and end of the series because of the moving averages, (c) they eliminate extreme values, 
(d) they take into account trading-day variations, (e) most important, they isolate each com-
ponent one at a time, by first calculating crude estimates which are further refined, and 
finally (f) they allow the user several options [see Shiskin (1957) (1961); Shiskin et al. (1967); 
McLaughlin (1962). (See also Figure 3.) 

The Census II method first appeared in 1955 and was "essentially an electronic-computer 
adaptation of manual methods that have been developed and tested over a period of 30 to 
40 years" [Shiskin (1961), p. 1]. Between 1955 and 1960 the method was extensively tested 
and in 1960 the X-3 version was made available to the public. During 1960 and 1961 several 
variations of the X-3 version of Census II were tested, both by the bureau of the Census of 
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Figure 3. Major tanks in Census II. 

Steps 	 Description 

Multipiy the data of each month by the Trading-Days (T-D) adjustment 
coefficient, Di/ D, where D. is the T-D for each of the months, and 1);  is 
the average, over all years, for this particular month. 

Calculate a 12-month, centred, Moving Average (12-MMA), its purpose 
is to eliminate the seasonality and some of randomness. Thus the Trend-
cycle will remain. 

Divide the M.A. into the original data, (1)/(2). 
The result is: Ratios of seasonal — irregular components. 

Calculate a 3 x 3 M.A. (a 3-term M.A. of a 3-term Moving Average— double 
M-A) to each month separately. lts effect will be to eliminate the random-
ness in (3). 

Calculate the standard deviation (S.D.) for each month separately (12 in 
all) by summing up the square difference between R, (M.A. with random- 
ness + (3)) and R; (M.A. without randomness (4.a)). 

Replace extreme values of R„ (3). Compare R; plus, or minus, two standard 
deviations with R„ if Rt is greater titan R; + 2S.D. or smallerthan R; —2S.D., 
its value is replaced as the average of the preceding and following value. 
Thus, the effects of extraordinary events (strikes, floods, wars, etc.) are 
eliminated. 



Preliminary j Seasonal Factors 

or 	 Calculate a 3 x 3 or a 5 x 5 M.A. of each month separately, in (5); the 
result is the elimination of randomness. 

(6) 3 x 3 M.A. 
5 x 5 M.A. 

Fill-in missing 
values at each 
end of the series 

Preliminary Seasonal Adjustment 

PS,= ^r = 
Divide the data by the seasonal factors of (6). The outcome is a series 
which is preliminarily adjusted for seasonality. 

* * 

Preliminary Trend-cycle I Component 
Fill-in missing 
values at each 
end of the series. 

(8) 
Apply the Spencer's 15-month weighted M.A. to (7). The result is 
smooth series (with almost all of randomness eliminated) which high-
lights the Trend-cycle component. 1M; = Tr *C, 

Divide M, (8), into the original data; the effect is the same as in Step (3). 
However, (8) did not include seasonality to start with. 

X, Sr*Ss**1 

M; 	Y\*1%. 

as in Step (4a) 

y  
3 x 3 M.A. 
1'S; = Sr  

Fill-in missing 
values at each 
end of the series 

as in Step (4b) S.D.i  1(FS,—SF;) 2  
n/12 

as in Step (5) 



Final 1 Seasonal Factors 

Fill-in missing 
values at each 
end of the series 

(12) 
3 x 3 (or 5 x 5) 

M.A. 
FS; — St 

as in Step (6) 

* 	Fill-in missing 
(14) * * values at each 

• * end of the series 
* * 

* 
* 
* * 
* * 

— Perform Different Test to make sure that the 
estimation of the Seasonal, Trend-cycle, and 

(16) 	random components are correct. 
Compute Months for Cyclical Dominance (MCD). 

— Calculate Summary Statistics. 

FAN = Ti*Ct I 

(15) FA, Yc*1, 
RC, 

F A; 'Tee, 

(13) * *  
• * 

* 
* * 

F A, = —X , = Ti*Ct*1  t 
S; 	\St, 

Figure 3 (continued). 

Steps 	 Description 

Final Seasonally 4, Adj. Series 
Series adjusted for seasonality (final result). 

Apply Spencer's 15-point weighted M.A. on (13); the outcome is to 
eliminate the randomness, thus achieving a refined estimate of Trend- 
cycle (final result). 	 te, 00 

RC, is an estimate of the random composent. It is found by dividing 
(13) by (14). 

Use original data and those of steps (13), (14) and (15) to obtain results. 

— Compute a Moving Average whose length is 
equal to the months for cyclical dominance. Up-
date this average to obtain estimates of trend- Use the seasonally adjusted data of step (13). Update this moving average 

(17) 	cycle. 	 to easily obtain current estimates of Trend-cycles (i.e. it is used instead 
— Use the seasonal factors projected in (12) as of FA;, in (14)). 

seasonal indices. 
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the United States government and many other organizations. This resulted in minor revisions 
and modifications which were labelled X-4 to X-8. 

By the end of 1961 the development of Census II reached a stable state and two versions 
became available to a wide number of users : the X-9 and X-10. X-9 is the standard program 
while X-10 can be used for erratic data. Since 1965 another version was introduced, the X-11, 
which is widely used today by government agencies and private organizations. X-11 differs 
from X-9 and X-10 in (a) providing different options to the user, (b) allowing the choice 
between an additive or multiplicative model, (c) producing full output or summary measures, 
(d) permitting choice of the o-  limits for identifying and replacing extreme values, (e) specifying 
the type of moving average to be used and (f) enabling sequential additive and multiplicative 
adjustments. However, the differences between X-9 and X-11 are not great in essence but 
rather in the options allowed the user and the greater volume of output and complexity of use. 

Figure 3 describes briefly the major tasks involved in Census II. Though the description 
does not refer to any specific version, it is doser to X-9 than the currently used X-11. As the 
reader can see from Figure 3, there is a large number of empirical rules which cannot be 
justified, except by saying that the method has been tested in tens of thousands of cases and 
has produced satisfactory results, from the point of view of accuracy. 

The Census II method has been attacked on several fronts, Apart from having a large 
number of empirical rules applied, the method has been criticized on the following: 

(a) It can overadjust the time series (i.e. it can attribute part of the randomness to some 
of the component(s) of the time series [Nerlove (1965)]. 

(b) It can distort the different components through the moving averages utilized [Burman 
(1965)]. 

(c) It eliminated only major seasonal peaks, leaving the remaining ones unchanged [Nerlove 
(1964)]. 

(d) Seasonally adjusted series distort the relationship between variables [Wallis (1974)]. 
(e) On technical grounds, Hannan (1963) and Durbin (1957) showed that the repetition of 

moving averages in order to remove the trend is unnecessary. 

Several attempts have been made to correct the weaknesses of Census II. However, up to 
now, there has been no method which has been put into practice or widely accepted, either 
as a substitute or as a modification to Census II. The methods proposed [Granger (1954); 
Nerlove (1965); Burman (1965)] are based on applying some form of spectral analysis on the 
data. It is argued that filtering the data will evolve removing frequencies at any desired level 
without altering the basic form of the data. This is impossible with moving averages which 
introduce several biases in the data [see Kendall (1946), ch. 29]. 

Finally, McLaughlin and Boyle (1968) introduced a decomposition method which borrows 
heavily from Census II which, however, is well suited for business applications, thus com-
plementing Census II which is mainly used for macro data. The major attempt of McLaughlin 
and Boyle's approach is to discover the direction of change in the cyclical component and to 
forecast it as much as possible. It is a new method in the sense that it can be used as an 
umbrella under which several time-series or regression methods can be continually tested 
for their accuracies and contributions. 

5. Miscellaneous Methods 

(a) Trend Analysis 

The narre "trend analysis" is used to denote simple regression with time as the independent 
variable. That is, 

Xt = a+bt+ut 	 (105) 
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where a and b are the regression coefficients and t is time. The parameters a and b are calcu-
lated through classical linear least squares. A variation of (105) will be made by introducing 
dummy variables which can absorb seasonality or 

X,= a+bt+b2D1+b3D2+...+bL _ I DL _ i+u, 	 (106) 

where Di  is ith variable introduced for the seasonality, and L is the length of seasonality. 

(b) S-curve Analysis 

The term "S-curve", or "life-cycle analysis", is used to denote a trend fitting through (107). 

a+  
Xt  = e 	(u,). 	 (107) 

Equation (107) can become equivalent of (105) if we transform X, and t, by: 

= log eX, 

7 =- 
1 

(107) then becomes: 
Xt  = a+bi+u, 	 (108) 

which can be solved as (105) by least squares. Both trend and S-curves are quite useful for 
medium and longer-term prediction; they are quite simple in both the building of the model 
and the estimation. For further references, the reader should refer to any standard statistical, 
econometric or forecasting books [for example, see Johnston (1972); Wheelwright and 
Madridakis (1973)]. 

(c) Quality-Control Charts (QCC) 

Quality-control charts (QCC) were used extensively in the past as an aid to quality control. 
They consist basically of two control limits, which are +3a above the mean. If new values 
are within these limits, the process is considered under control; otherwise, the reasons for the 
significant deviation are sought. The literature in this field is extensive, starting in 1931 with 
the work of Shewhart (1931) and continuing until the early '60s, when the shift was made 
from QCC to statistical adaptive optimization and control, which is a more powerful control 
procedure. However, the interested reader should refer to Page (1957, 1961), Barnard (1959), 
Roberts (1959) and Golsmith and Whitfield (1970) for additional information about QCC 
whose usefulness, as a practical tool, is still highly significant. 

An interesting application of control charts was made by Harrison and Davies (1964) 
who used them to detect (a) when the pattern of a time series has changes and (b) when a 
given forecasting method is no longer adequate. This is similar to Trigg's (1964) and Trigg's 
and Leach's (1967) tracking signais, except that they can be applied to other than single 
exponential smoothing time-series methods. 

(d) Combining the Results of Several Time-Series Methods 

Bates and Granger (1969) report that if separate sets of forecasts are combined to form a 
composite forecast the mean square error of the latter is lower than either of the mean square 
errors of the separate predictions. The weighting factor, K, used to weight the forecasts, is 
calculated by: 

where a; 
,.2 
"2 

al —a2  —2pala2 
	 (109) 

is the variance of the first forecast, 

is the variance of the second forecast and p is the correlation between the two 
forecasted values. 

— Paia2 K=  
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(e) Choosing and Comparing Various Forecasting Methods 

A computerized set of programs containing over 15 of the major forecasting methods is in 
existence [see Makridakis et al. (1974)]. It performs standard time-series-data analysis, and 
allows the user to select a method(s) which is best suited to his accuracy and costs preferences, to 
run this method(s), or any other available, to compare the results, to combine the results of 
several methods, and analyse his data in order to discover and estimate the trend-cycle 
composent. 

IV. Applicability of Time-Series Methods 

Time-series applications are still in a period of consolidation after a tremendous volume of 
theoretical material has become available in the last 40 years. The potential applicability of 
time-series methods has sot been fully utilized or even explored as yet. Much more has to 
be done. It is a kind of paradox that exponential smoothing models, the least sophisticated 
of time-series methods, are those which have been utilized the most. On the other hand, there 
are autoregressive/moving-averages schemes which are the least applied although their 
theoretical rigorousness is the most complete of ail methods in the area of time series. In 
between, there are the filtering and the decomposition techniques which have been used by 
engineers and economists respectively, with considerable success and satisfaction. 

Exponential smoothing models were introduced around 1960 by operation researchers, 
and within a few years they were utilized on a grand scale by business enterprises and the 
military. Their main contribution has been in the area of short-term forecasting of inventories 
and the sale of individual items or products. Their utilization cost is extremely low, while 
their accuracy is at least as good as that of autoregressive/moving averages processes according 
to one researcher [Groff (1973)]. Their disadvantage is that there are several models available, 
from which the user must select the one best suited to his data and personal preferences. 

Filtering models became practical in the early 1960s with Kalman's (1960) contribution. 
His approach and the availability of the computer were the decisive factors for a wider-scale 
utilization. Filters have since then successfully been utilized in navigational systems, the 
space programme and in specialized areas such as guidance and control devices. It is the 
author's opinion that filtering techniques are the most promising of time-series methods 
and that their usage will increase in the future and eventually pass to disciplines other than 
engineering. 

Decomposition methods have been used mainly by economists for the purpose of adjusting 
time series for seasonality and predicting the business cycle. They are the oldest of time-series 
methods (excluding those in time-series analysis) and the most empirically oriented of ail. 
However, from the point of view of accuracy they seem to be producing adequate results; 
even though this last statement has sot been proved by extensive research findings. De-
composition methods are very intuitive and intended for the non-specialist practitioner. As 
with smoothing techniques, they require little previous knowledge for being used or for 
interpreting the results. 

Finally, autoregressive/moving-average methods, or the Box-Jenkins approach, as it is 
more widely known, have been used extensively by statisticians in the fields of forecasting 
and control. As it has already been mentioned, although their theoretical rigorousness and 
completeness are surpassed they have lagged in actual application. In my opinion, it is the 
complexity of the method which hinders utilization. There are sot many expert statisticians 
in places where the method should be utilized to use it properly. Some characteristic problems 
of using the method can be seen in Chatfield and Prothero (1973) where the authors supposedly 
used the wrong transformation of the data, thus getting inaccurate results. In a discussion 
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following the presentation of the paper, given at a meeting of the Royal Statistical Society, 
a practitioner [Chatfield and Prothero (1973), p. 329] expressed his concern as follows: 

"The authors (Chatfield and Prothero) have used the Box-Jenkins procedures in a way which is, at least, 
not obviously and blatantly erroneous, and the result have been worse than those obtained even by guestimat-
ing . . I do not want to judge whether or not the criticisms made of the authors are valid, but I am sure that 
the authors represent ability far above that available for forecasting in most organizations and if they have 
not succeeded in applying the Box-Jenkins procedure correctly, then this is, in a senne, a criticism of the Box-
Jenkins procedures." 

On the other hand, there is a lot of room for improving autoregressive/moving-average 
methods in terms of their accuracy and usefulness, not only to a very small segment of expert 
statistically but also to the wide audience of users. 

The time-series approach to the modelling of real systems is one of two alternative approaches. 
In next section, a brief examination of the two approaches will be given. 

Time-Series Versus Explanatory Models 

The time-series methods examined in section III of this paper can ail be used for predictive 
purposes, while those of Part II aim at facilitating the utilization of Part III methods. In 
addition, some of the methods can be used for filtering or purely smoothing purposes. Time-
series methods look at forecasting filtering or smoothing as a "black box"; they are not 
interested in why something is happening. The only other alternative to such a purely 
mechanistic approach is to attempt to explain the behaviour of a certain factor through 
variations in a number of independent variables. This can be done through single or a system 
of multiple regression equations which, by their nature, are explanatory. 

Arguments as to whether to use a mechanistic or explanatory model centre on philosophical 
as well as accuracy-oriented grounds. The proponents of time-series models say that the 
future, at least in the short term, is a continuation of the past. They are only interested in 
discovering its past behaviour which could be consequently extended to predict the future. 
They are not concerned with the reasons for what is happening; they only want to know that 
it will take place. Explanatory models are the exact opposite. They search for casual relation-
ship(s) which underline the reasons for what is going on. Their proponents argue that the 
basic structure of events changes with time, thus you cannot forecast the future without 
taking into consideration the factors which will influence its course. 

Such an approach was very popular in the '50s and '60s and came mainly from economists; 
it resulted in huge econometric models, often consisting of hundreds or even thousands of 
variables. It is difficult to doubt the power of these models to explain in an ex-post manner 
what has happened. However, there are serious doubts as to their ability to forecast better 
than time-series models. The same point was made by Evans who talks about the utility of 
leading indicators: "The series serves as a valuable, historical record and sheds light on the 
causes of past depressions". But as a practical method of forecasting, the leading indicators 
cannot be used very effectively or accurately. 

Explanatory models, by their nature, require a number of independent variables whose 
magnitude, for some future time, must be estimated before any predictions about the future 
can be made. The critics of the econometric approach saying that this is not forecasting but 
guess-work. What is actually done is to shift the burden of forecasting from that of directly 
predicting some factor of interest to another one which attempts to estimate several in-
dependent variables before it can forecast. 

If we are to compare time-series and regression models on purely predictive grounds, the 
former have been doing better than the latter group [see Cooper (1972); Naylor (1972); Granger 
and Newbold (1972); Nelson (1972)]. In addition, time-series models are cheaper to develop, 
easier to utilize and update, and in general, less complex to use. Furthermore, they provide 
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the user with a wider choice of models from which to select the most appropriate for his 
cost and accuracy preferences. It is the author's opinion that since the mid-'60s, for the 
above reasons, there has been a graduai shift from regression to time-series models. Although 
such a statement cannot be documented with research findings, it can be said with a higher 
degree of confidence that time-series models provide a cheaper and much simpler alternative 
to forecasting than any of the regression techniques. This does not imply that multiple 
regression or econometric models are useless, but that they are better suited to answering 
"if then" type of questions. Their utilization is best suited when several alternatives must 
be explored and their effect estimated and used for planning purposes. As such, explanatory 
models are invaluable and perform a task which mechanistic approaches, such as time series, 
cannot handle. 

In practical terms, time-series models are better suited for short and longer-term predictions. 
This leaves the range of medium-term forecasting open, which must be filled in mainly with 
explanatory models. In the short term, events are correlated, quite often highly, which makes 
time-series forecasting easier to perform. Furthermore, drastic changes are less likely. This 
results in more accurate forecasting. In the longer run, the two methods mentioned in section 
111.5 are also suitable although their accuracies are not very high, nor can they be well 
assessed. However, they are the only viable alternatives for forecasting future trends and 
saturation points. Regression models which often require the estimation of hundreds of 
independent variables cannot be used for such purposes because of the impossibility of 
accurately estimating the future values of the independent variables involved. 

Selecting an Appropriate Time-Series Method 

The author does not pretend to have made an exhaustive survey of ail the time-series methods 
in existence. But even if we assume that a selection from the alternative methods described 
in Part III has to be made, the potential user must choose from a great many methods. The 
selection process is not easy because (a) there is little evidence to guide us as to the accuracies, 
costs and other factors which influence the choice of methods and (b) because several time-
series methods are neither well known nor well documented. The last point can be easily 
demonstrated by the autoregressive/moving average models which did exist for a long period 
of time, but only became known and widely used since Box and Jenkins published their 
book. There are several other methods in the same position as with autoregressive-moving-
average schemes before 1970. 

There are a number of factors which influence the selection of a specific time-series method 
and will have to be examined separately before a specific choice is made; these factors relate 
to the number of data points, costs, accuracies and complexity required to utilize a specific 
method. Each of the factors will be examined in more detail next. 

(a) Data Requirements 

Different time-series method require varying numbers of data points. These can range from 
a few, required for simple exponential smoothing, to more than 72, which is the minimum 
for methods like the Census II or the seasonal autoregressive/moving-averâge models. It 
may seem trivial that data could be a restricting factor in terms of selecting a desired model, 
but in practice it is often the case. Data covering a long-time span often do not exist; at 
other times they are not in a compatible form, or are bard to gather. In addition, the cost of 
collecting and storing can be a prohibitive factor when a large number of time series is involved. 
These considerations make the number of available data points a crucial factor which, in 
turn, determines the method to be used. 

We can distinguish two types of data requirements : the first is needed to fit initially a model 
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and to estimate its parameters, and the second in order to update the model or its parameters. 
In the first category, we can include all methods except the smoothing and the filtering tech-
niques whose parameters, once calculated, can be easily updated as new data points become 
available. The data storage and computations required for updating such a method are 
minimal, an advantage of great practical value which makes the desirability of smoothing 

Method Minimum data requirements 

Subsequent estimations 
Initial parameters — Estimation 

DATA 	Parameters or summary 
measures 

Autocorrelation analysis 6 to 7 times the suspected length 
of seasonality 

not applicable 

Spectral analysis 6 to 7 turnes the suspected length 
of seasonality 

not applicable 

Simple exponential smoothing 10 to 20 1 	2 

Linear exponential smoothing 10 to 20 1 	3 

Higher forms of exponential 15 to 25 1 	3+ order of 
smoothing trend 

Harmonic smoothing 2L to 3L 1 	3L 

Autoregressive/moving-average 30 plus 3 to 4 times the highest same as 	as with estimation 
schemes order parameter initial 

Decomposition 72 same as 	as with estimation 
initial 

Trend analysis 15-20 same as 	as with estimation 
initial 

S-curves 15-20 same as 	as with estimation 
initial 

Winter 2L to 3L 1 	L + 5 

Adaptive filtering 4L to 5L 1 	L+1 

Foran 18 18 	between 50-100 

Kalman-Bucy 30-50 1 	4 for each time series 

Transfer function 40 plus 3 to 4 times same as the 
highest order parameter initial 

as with estimation 

Figure 4. Minimum data requirements. 

and filtering methods high. Figure 4 shows the approximate (according to the author) 
minimum number of data points required to utilize the different time-series methods discussed 
in Parts II and III. Unfortunately, there are no objective rules to determine minimal data 
requirements. 

(b) Costs 

The costs associated with developing and running a given time-series method vary considerably. 
At one extreme, one can distinguish single smoothing techniques whose cost is insignificant, 
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and at the other we can place transfer-function models which are extremely costly both to 
develop and to run. As with everything else associated with time-series applications, there 
is very little information about the exact costs associated with developing and running time-
series methods. Such information is vital to the user who wishes to have an approximate 
cost figure before committing himself to utilizing times series for either forecasting or control 
purposes. Chambers (1971) has suggested some cost figures; similarly Makridakis and 
Wheelwright (1974) have derived some overall cost estimates. However, both cost estimates 
are based on person experience rather than extensive research into actual development and 
running costs. 

(c) Accuracies 

Accuracies vary according to the type of methods being utilized, but matters are even more 
complicated here than with the number of data points or costs. While the latter is independent 
of external factors, accuracies are influenced by how many data points are used and by the 
ability of the user to select the most appropriate from the different categories of time-series 
methods as well as the specific model within each category. There are few cases of com-
parative research with the accuracy of the different time-series methods. Reid (1971), Granger 
and Newbold (1972) and Groff (1973) have tested a limited number of methods for their 
accuracies. However, the results are somewhat conflicting. Reid and Granger and Newbold 
report that the Box-and-Jenkins method was superior to the others when there were more 
than 50 data points and when one-step-ahead forecasts were made. On the other hand, Groff 
reports the Box-and-Jenkins approach to autoregressive/moving-average models to be less 
accurate than exponential and harmonic-smoothing methods. Furthermore, he does not 
discover that the accuracy of the Box-and-Jenkins method is influenced by the number of 
data points. Obviously, there are several factors, not yet known to us, which influence 
accuracy, thus causing discrepancies as those just mentioned. Reid, and Granger and Newbold, 
for example, used industry-wise and macro-data respectively, while Groff tested micro-series. 
It will be difficult to know the exact factors affecting accuracy unless more research is done 
in this area. 

(d) Complexity 

Complexity is a factor which determines if a potential user is willing to employ a certain 
time-series method. If the complexity of the method requires an expert statistician to develop 
it and interpret the result once it has been utilized, it will be a prohibiting factor for a great 
number of users. Thus, in addition to the data cost and accuracies of each method, its complexity 
should be taken into account when determining its applicability. 

Some secondary factors involved are the time horizon of the forecasting or planning 
application (short, medium and long) and the type of the time series involved (stationary, 
non-stationary, seasonal, non-seasonal). It is not, however, worth examining these in more 
detail since their influence on the applicability of a given time-series method is rather obvions. 

Conclusion 

In ail, time-series methods have gone a long way since they were first introduced. There is 
now a rather wide variety of methods which can be utilized to fit the majority of present-day 
estimation, forecasting or control needs involving time series. They now operate under 
varying monetary budgets, and can be employed in such a way that a high degree of accuracy 
can be achieved. The problem is not technical, but that there is a Jack of communication 
between the experts in time-series method and the potential users. Jenkins and Watts (1968) 
and Box and Jenkins (1970) rendered a great service in making these methods more widely 
known and for which they deserve a lot of credit. The same is true of Kalman (1960) who 
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made the introduction of filtering techniques known to a wider audience which was persuaded 
as to their importance. 

There are still practical problems, however. For once there is no adequate documentation, 
both in terms of verbal descriptions of how to use each method and how to interpret the 
results and in terms of computer programs, which will enable a non-technically-oriented 
user to utilize time-series methods. In both cases, there is little done for the non-specialist. 
The description of the methods is too mathematical and the different programs in existence 
are not standardized. Finally, the potential user is not convinced as to the benefits of utilizing 
time-series filtering, forecasting or control methods. There is a Jack of information to allow 
the assessment of costs, accuracies and, of course, in final analysis, benefits from using time-
series techniques. In ail, the criticism is similar to that made on management science by 
Grayson (1973). These points can be again viewed in relation to the problems referred to in 
Chatfield and Prothero (1973), mainly that using time-series methods is an art requiring 
expertise knowledge which only few specialists know how to apply and which scare off 
practitioners in that case. 

In the author's opinion, the above-mentioned drawbacks must be corrected; there are 
several research priorities urgently needed. First, research findings should establish the 
level of accuracy, preferably expressed in absolute mean percentage errors, of each individual 
time-series method. Secondly, a detailed figure of the actual cost of developing and running 
each time-series technique must be found. Such information would be invaluable for any 
potential user. The job, though not easy, because of the large number of factors influencing 
accuracy and cost, is not as difficult as similar tasks performed by physicists or other natural 
scientiste. 

Another area of research should be directly towards expanding filters to include Moving-
Average schemes. Such a job will undoubtedly increase their efficiency with little extra com-
putational burden. Furthermore, the applicability of filters outside of engineering situations 
seems highly promising. Harrison and Stevens (1971) took the first step in this direction, 
although much more should be done to make the utilization of the Kalman filters more 
possible for forecasting and control purposes. Filters combine the characteristics of both the 
smoothing methods (in terms of cost) and of autoregressive schemes in terms of theoretical 
rigorousness, without being as difficult or complex to use. Thus, their utilization in non-
engineering applications could be extremely useful. 

Another area requiring attention is that of ways of predicting the business cycle in a more 
satisfactory way. This is an area of extreme importance in business forecasting in which no 
time-series method bas been successful. There are, of course, some isolated attempts such 
as those by the designers of Census II, and McLaughlin and Boyle (1968). However, the 
results have been mediocre. There must also be creative programming work which will result 
in the creation of forecasting packages easy to use, understand and which present their results 
in such a way that a non-specialist can utilize them for his planning, forecasting, control or 
estimating needs. 

Finally, the most important job lying ahead is that of making time-series methods known 
to non-specialists. Such a task will create a large number of users and therefore increase the 
interest and activity in the area of time series. The author believes that the usefulness of time-
series methods is poorly understood by only a tiny segment of potential users. In his opinion, 
it is the job of educating potential users about the merits of the time-series approach to 
chronological data which is the most urgently needed. 
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Résumé 
Les méthodes de séries chronologiques ont été utilisées de façon extensive ces vingt dernières années à des fins 
d'analyse (par exemple pour trouver les caractéristiques d'une série de données), de prédiction ou de contrôle. 
Ce domaine est parfaitement interdisciplinaire puisqu'on y a développé des méthodes utilisées en statistiques 
(processus ARMA), le génie (filtres), la recherche opérationnelle (modèles de lissage exponentiel), l'économie 
(méthodes de décomposition). Le but de cet article est de décrire chacune des principales méthodes existant 
actuellement et de les synthétiser en un tout intégré faisant ressortir leurs analogies et leurs différences. Enfin, le 
problème de l'applicabilité des différentes méthodes aux situations concrètes est abordé et l'accent est mis sur les 
directions à envisager pour de futures recherches. 


