1998

Forecasting: Methods and Applications

Makridakis, Spyros

John Wiley & Sons, Inc.

http://hdl.handle.net/11728/6636

Downloaded from HEPHAESTUS Repository, Neapolis University institutional repository
CONTENTS

I / THE FORECASTING PERSPECTIVE 1

1/1 Why forecast? 2

1/2 An overview of forecasting techniques 6

1/2/1 Explanatory versus time series forecasting 10

1/2/2 Qualitative forecasting 12

1/3 The basic steps in a forecasting task 13

References and selected bibliography 17

Exercises 19

2 / BASIC FORECASTING TOOLS 20

2/1 Time series and cross-sectional data 21

2/2 Graphical summaries 23

2/2/1 Time plots and time series patterns 24

2/2/2 Seasonal plots 26

2/2/3 Scatterplots 27

2/3 Numerical summaries 28

2/3/1 Univariate statistics 29

2/3/2 Bivariate statistics 34

2/3/3 Autocorrelation 38

2/4 Measuring forecast accuracy 41

2/4/1 Standard statistical measures 42

2/4/2 Out-of-sample accuracy measurement 45

2/4/3 Comparing forecast methods 46

2/4/4 Theil's U-statistic 48

2/4/5 ACF of forecast error 50

2/5 Prediction intervals 52

2/6 Least squares estimates 54

2/6/1 Discovering and describing relationships 59

2/7 Transformations and adjustments 63

2/7/1 Mathematical transformations 63

2/7/2 Calendar adjustments 67

2/7/3 Adjustments for inflation and population changes 70

Appendices 71

2-A Notation for quantitative forecasting 71

2-B Summation sign Σ 72

References and selected bibliography 74

Exercises 76

3 / TIME SERIES DECOMPOSITION 81

3/1 Principles of decomposition 84

3/1/1 Decomposition models 84

3/1/2 Decomposition graphics 87

3/1/3 Seasonal adjustment 88

3/2 Moving averages 89

3/2/1 Simple moving averages 89

3/2/2 Centered moving averages 94

3/2/3 Double moving averages 98

3/2/4 Weighted moving averages 98

3/3 Local regression smoothing 101

3/3/1 Loess 104

3/4 Classical decomposition 106

3/4/1 Additive decomposition 107

3/4/2 Multiplicative decomposition 109
3/5 Variations on classical decomposition 112
3/5/1 First Iteration 114
3/5/2 Later Iterations 118
3/5/3 Extensions to X-I2-ARIMA 119

3/6 STL decomposition 121
3/6/1 Inner loop 122
3/6/2 Outer loop 123
3/6/3 Choosing the STL parameters 124
3/6/4 Comparing STL with X-I2-ARIMA 124

3/7 Forecasting and decomposition 125

References and selected bibliography 127
Exercises 130

4/1 The forecasting scenario 138
4/2 Averaging methods 141
4/2/1 The mean 141
4/2/2 Moving averages 142
4/3 Exponential smoothing methods 147
4/3/1 Single exponential smoothing 147
4/3/2 Single exponential smoothing: an adaptive approach 155
4/3/3 Hot's linear method 158
4/3/4 Holt-Winters' trend and seasonality method 161
4/3/5 Exponential smoothing: Pegels' classification 169
4/4 A comparison of methods 171
4/5 General aspects of smoothing methods 174
4/5/1 Initialization 174
4/5/2 Optimization 176
4/5/3 Prediction intervals 177

References and selected bibliography 179
Exercises 181

5 SIMPLE REGRESSION 185
5/1 Regression methods 186
5/2 Simple regression 187
5/2/1 Least squares estimation 188
5/2/2 The correlation coefficient 193
5/2/3 Cautions in using correlation 196
5/2/4 Simple regression and the correlation coefficient 198
5/2/5 Residuals, outliers, and influential observations 203
5/2/6 Correlation and causation 208
5/3 Inference and forecasting with simple regression 208
5/3/1 Regression as statistical modeling 209
5/3/2 The F-test for overall significance 211
5/3/3 Confidence intervals for individual coefficients 215
5/3/4 t-tests for individual coefficients 217
5/3/5 Forecasting using the simple regression model 218
5/4 Non-linear relationships 221
5/4/1 Non-linearity In the parameters 222
5/4/2 Using logarithms to form linear models 224
5/4/3 Local regression 224

Appendixes 228
5-A Determining the values of a and b 228
References and selected bibliography 230
Exercises 231

6 / MULTIPLE REGRESSION 240
6/1 Introduction to multiple linear regression 241
 6/1/1 Multiple regression model: theory and practice 248
 6/1/2 Solving for the regression coefficients 250
 6/1/3 Multiple regression and the coefficient of determination 251
 6/1/4 The F-test for overall significance 252
 6/1/5 Individual coefficients: confidence intervals and t-tests 255
 6/1/6 The assumptions behind multiple linear regression models 259
6/2 Regression with time series 263
 6/2/1 Checking independence of residuals 265
 6/2/2 Time-related explanatory variables 269
6/3 Selecting variables 274
 6/3/1 The long list 276
 6/3/2 The short list 277
 6/3/3 Best subsets regression 279
 6/3/4 Stepwise regression 285
6/4 Multicollinearity 287
 6/4/1 Multicollinearity when there are two regressors 289
 6/4/2 Multicollinearity when there are more than two regressors 289
6/5 Multiple regression and forecasting 291
 6/5/1 Example: cross-sectional regression and forecasting 292
 6/5/2 Example: time series regression and forecasting 294
 6/5/3 Recapitulation 298

6/6 Econometric models 299
 6/6/1 The basis of econometric modeling 299
 6/6/2 The advantages and drawbacks of econometric methods 301
Appendixes 303
 6-A The Durbin-Watson statistic 303
References and selected bibliography 305
Exercises 306

7 / THE BOX-JENKINS METHODOLOGY FOR ARIMA MODELS 311
7/1 Examining correlations in time series data 313
 7/1/1 The autocorrelation function 313
 7/1/2 A white noise model 317
 7/1/3 The sampling distribution of autocorrelations 317
 7/1/4 Portmanteau tests 318
 7/1/5 The partial autocorrelation coefficient 320
 7/1/6 Recognizing seasonality in a time series 322
 7/1/7 Example: Pigs slaughtered 322
7/2 Examining stationarity of time series data 324
 7/2/1 Removing non-stationarity in a time series 326
 7/2/2 A random walk model 329
 7/2/3 Tests for stationarity 329
 7/2/4 Seasonal differencing 331
 7/2/5 Backshift notion 334
7/3 ARIMA models for time series data 335
 7/3/1 An autoregressive model of order one 337
References and selected bibliography 543
Exercises 547

12 / IMPLEMENTING FORECASTING: ITS USES, ADVANTAGES, AND LIMITATIONS 549

12/1 What can and cannot be predicted 551
 12/1/1 Short-term predictions 553
 12/1/2 Medium-term predictions 554
 12/1/3 Long-term predictions 557

12/2 Organizational aspects of forecasting 558
 12/2/1 Correcting an organization's forecasting problems 561
 12/2/2 Types of forecasting problems and their solutions 562

12/3 Extrapolative predictions versus creative insights 567
 12/3/1 Hindsight versus foresight 569

12/4 Forecasting in the future 571
 12/4/1 Data, information, and forecasts 571
 12/4/2 Collective knowledge, experience, and forecasting 572

References and selected bibliography 575
Exercises 576

APPENDIX I / FORECASTING RESOURCES 577

1 Forecasting software 578
 1/1 Spreadsheets 578

2 Forecasting associations 583
3 Forecasting conferences 585
4 Forecasting journals and newsletters 585
5 Forecasting on the Internet 586

References and selected bibliography 588

APPENDIX II / GLOSSARY OF FORECASTING TERMS 589

APPENDIX III / STATISTICAL TABLES 549
A: Normal probabilities 620
B: Critical values for t-statistic 621
C: Critical values for F-statistic 622
D: Inverse normal table 628
E: Critical values for χ² statistic 629
F: Values of the Durbin-Watson statistic 630
G: Normally distributed observations 632

AUTHOR INDEX 633
SUBJECT INDEX 636
THE FORECASTING PERSPECTIVE

I/1 Why forecast? 2
I/2 An overview of forecasting techniques 6
 I/2/1 Explanatory versus time series forecasting 10
 I/2/2 Qualitative forecasting 12
I/3 The basic steps in a forecasting task 13
References and selected bibliography 17
Exercises 19