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CHAPTER 9

MULTIPLE REGRESSION

In Chapter 8 simple regression and correlation were introduced and discuss-

ed. In simple regression the basic proposition is that an independent variable
can be used to predict the value of some dependent variable (the quantity to
be forecast) on the basis of a linear relationship between the two variables.
In the major example in that chapter the variable to be forecast was the
number of orders received daily by a mail-order house. The independent
variable on which that forecast was based was the weight of all mail for that
day. In many decision-making situations more than one variable can be used
to explain or forecast a certain dependent variable. For example, in the
mail-order situation the day of the week, as well as the weight of mail
received, might be used to predict the number of orders.

In situations where more than a single independent variable is necessary to
forecast accurately, simple regression is not adequate. The idea of simple
regression can be generalized, however, through the technique of multiple
regression to allow the manager to include more than one independent
variable. This chapter examines the extension and application of the basic
principles of simple regression to situations in which several independent
variables affect the outcome of some dependent variable.

The specific example we will use in this chapter to illustrate the principles
and concepts of multiple regression and multiple correlation concerns the
forecasting of annual sales for a company in the glass business. Table 9-1 lists
some of the historical information that this company, California Plate Glass
(CPG), has gathered.

This table contains data not only on the variable company sales (net sales),
but also on two other variables, annual automobile production and the
number of building contracts awarded annually. The management of CPG
believes that its net sales are closely tied to these other two industries, since
its major customers are automobile producers and building contractors. We
assume that as a part of the planning process, top management has asked for
a forecast of corporate sales on an annual basis for the next five years.
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184 Multiple Regression

Table 8-1 Historical Data Relating to CPG Sales

Automobile
Production Building Contracts
Net Sales, CPG, (Millions of Awarded
-Year (Millions of Dollars) Units) (Millions of Starts)
1972 280.0 3.909 9.43
1973 2815 5.119 10.36
1974 3374 6.666 14.50
1975 404.2 5.338 15.75
1976 402.1 4.321 16.78
1977 4520 6.117 17.44
1978 431.7 5.55% 19.77
1979 5823 7.920- 23.76
1980 596.6 5.816 31.61
1981 620.8 6.113 3217
1982 513.6 4258 35.09
1983 6069 5.591 36.42
1984 629.0 6.675 36.58
1985 602.7 5.543 37.14
1986 656.7 6.933 41.30
1987 778.5 7.638 45.62
1988 877.6 7.752 47.38
1989 (est.) 6.400 48.51
1990 (est.) 7.900 51.23
1991 (est.) 8.400 5747
1992 (est.) 8.600 61.03
1993 (est.) 8.900 66.25

Although the results of simple regression analysis may be satisfactory for
forecasting sales, management probably would prefer to use the information
it has on automobile production and building contracts at the same time; that
is, since management knows that both factors are important and that they
move somewhat independently of each other, it would like to be able to
forecast net CPG sales as a function of both automobile production and
building contracts awarded. Mathematically such a relationship could be
written as

net sales CPG = f{automobile production, building contracts awarded).

This equation states that net sales for the company depend on two indepen-
dent variables—automobile production and building contracts awarded.
Although several different forms of the equation could be written to show the
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relation between these variables, a straightforward one would be
}‘} = a + b|X| + bzXz (9'])

where Y = estimated value of CPG annual sales
X, = annual automobile production
X, = annual building contracts awarded.

From this equation it can be seen that if either X, or X, were elimiated, we
would have the same situation that we handled with simple linear regression.
Since we have more than one independent variable (X, and X;), the regression
is known as multiple. Note that in Equation (9-1) the dependent variable (the
one we wish to forecast) is expressed as a linear function of the independent
variables X, and X;.

Just as we used the method of least squares in Chapter 8 to find the
coefficients @ and b, we can use the same idea here to estimate the best values
for a, b,, and b,. In simple linear regression that method amounted to fitting
a straight line to the data points in a manner that minimized the sum of the
squared errors. We represented that graphically by letting one axis represent
Y and the other X. In the case of two independent variables, X, and X,, we
need a three-dimensional graph. The situation, however, is completely analo-
gous to two dimensions, but we now have three axes, ¥, X|, and X,, and we
are trying to fit a plane to the data points available. We do that by minimizing
the sum of the squared deviations from the plane.

In general, we could have several independent variables and we could still
apply the method of least squares to solve for the values of a, b,, b,,. . . , b,.
Multiple regression allows us to determine the estimated values of these
parameters using the principle of least squares.

When we move beyond the case of simple regression, the computations and
mathematics become quite complicated, although they follow the same basic
concepts of simple regression. Because of this complexity, we will not go into
-the details of the formulas required to estimate the values of multiple regres-
sion parameters. We will assume that the manager has at his or her disposal
a computer program for multiple regression that can handle all of these
calculations. The use of multiple regression is not recommended, unless some

kind of computer is available.

APPLICATION OF MULTIPLE REGRESSION ANALYSIS

To achieve a better understanding of the concept of multiple regression, we
can use the data given in Table 9-1 and apply the method of least squares to
obtain values for @, b,, and b, in Equation (9-1). In the first step we state just
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what the problem is and how we want to go about solving it. We assume that
the task is to forecast the company’s sales for the next five years (1989-1993)
and that these forecasts will be based in part on the estimated values of
automobile production and building contract awards for those years. Since
we have a number of historical observations in Table 9-1, we would like to
determine values for g, b,, and b, on the basis of these historical values and
then use Equation (9-1) to forecast the future values of company sales.

Using this historical information and a multiple regression computer
program, we obtain the following results: a = 19.1, b, = 35.7, and
b, = 10.9. Thus our equation for forecasting company sales can be written
as

¥ = 19.1 + 357X, + 109X, 9-2)

This states that on the basis of our historical observations (years 1972-
1988), the best linear equation is the one shown in Equation (9-2). Note that
the historical values we used in developing the equation were in millions of
dollars for net sales, in millions of units for automobile production and in
millions of starts for building contracts awarded. It is important to remember
that the actual values of the parameters depend on the units that we used in
estimating them. Thus it would be incorrect to interpret Equation (9-2) to
mean that automobile production is much more important than building
contracts in determining company sales, simply because 35.7 is larger than
10.9. If we had used different units for expressing automobile production, our
coefficient for X, could have been smaller than our coefficient for X;.

The proper interpretation of the values in Equation (9-2) is that when both
X, and X, are 0, company sales Y will have a value of $19.1 million, and that
when automobile production increases by one million units, company sales
will increase by $35.7 million (other things, i.e. building contracts awarded,
being held constant). Thus the coefficients in our equation generally provide
the manager with a rough idea of how changes in each of the independent
variables influence the value of the dependent variable Y. In order to forecast
sales for each of the next five years we need to substitute estimated values for
X, and X, in Equation (9-2). For the year 1989, these values are, for example,
6.4 and 48.51, respectively. Thus our estimate of sales for 1989 would be

¥ = 19.1 + 357(6.4) + 10.9(48.51)
= 776.3($ millions).
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Similarly, the computations for years 1990 through 1993 can be made by
using the appropriate values for automobile production and building contracts
awarded.

It should be noted that this approach for forecasting requires that we have
estimates of the values of the independent variables (in this case, X and X,).
Thus in formulating a multiple regression equation, the manager will want to
consider for which independent variables good estimates of future values will
be available. The two variables used in this case would seem reasonable, since
for economic reasons the country would most likely prepare long-range
forecasts of those variables to help in general economic planning. The
manager must keep in mind that the accuracy of the forecast for annual sales
depends in large part on the accuracy of the forecast for building contracts
awarded and automobile production. When these independent variables are
in error, there is clearly going to be a compounding effect in terms of the error
in the annual corporate sales forecast.

A final point about this example is that the forecasts for years 1989 through
1993 were made without first checking the significance of the parameters or
the appropriateness of the equation on which those forecasts were to be
based. These questions will be taken up in a later section.

MULTIPLE CORRELATION AND THE COEFFICIENT OF
DETERMINATION

It will be recalled that in simple regression we computed a statistic called
the coefficient of determination, which was simply the ratio of the explained
variation to the total variation. The same ratio can also be computed in
multiple regression, where again it is the explained variation over the total
variation. This coefficient of determination, denoted by R?, can take on
values from 0 to 1, the latter representing a situation in which all the variation
in Y is explained. The actual formula for calculating the coefficient of
determination in this case is exactly the same as that used for simple regres-
sion:

(¥, - Py

2 = e ———— )
B =sv -7y

9-3)

Returning to the example of annual sales of CPG, we compute the coef-
ficient of determination, using Equation (9-3), as 0.976. This means that
97.6% of the variation in annual sales can be explained by the combined
variation in automobile production and building contracts awarded.
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Table 9-2 Simple Correlation Matrix

CPG Automobile Building

Sales Production Contracts
CPG sales 1.000 0.688 0.948
Automobile production 0.688 1.000 0.530
Building contracts 0.948 0.530 1.000

In multiple regression it is possible to compute the individual coefficient of
correlation for each of the pairs of variables. Thus a simple correlation
coefficient could be computed for company sales and annual automobile
production. Another simple correlation coefficient could be computed for
annual sales and building contracts awarded. Finally, a correlation coef-

ficient could be computed for annual automobile production and annual

building contracts awarded. These three different correlation coefficients are
usually referred to as the simple correlations, since they involve only two
variables. They are most often represented in a correlation matrix like that
shown in Table 9-2.

The simple correlation matrix is of value to the manager using multiple
regression, because it indicates how each pair of variables is correlated. Thus
most computer programs that perform multiple regression analysis include
the computation of the simple correlation matrix. (Later in this chapter some
of the uses of the simple correlation matrix are described.)

TESTS OF SIGNIFICANCE

Animportant question that must be answered before the results of multiple
regression analysis can be used in forecasting future values is that of statisti-
cal significance. The computation of the coefficients in the regression
‘equation is based on the use of a sample of historical observations. Conse-
quently the reliability of forecasts based on that regression equation will
depend largely on this specific sample of observations that were used in its
development. Thus, the question of significance is really: how reliable are
forecasts that are based on a multiple regression analysis of a given sample
of data?

Although there are many tests of significance, three major ones should be
mentioned in connection with multiple regression. The same three tests were
discussed in Chapter 8 for simple regression.

The first test of significance that the manager should be concerned with in
using multiple regression is a test that indicates the overall significance in
the regression equation. The test used for this is the F statistic. (This test was
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described in Chapter 8 in connection with the significance of simple regress-
ion.)

The value of the F statistic is the ratio of the explained variance to the
unexplained variance. This can be written mathematically in two equivalent
forms. One form is

X - PPk = 1)

= = 9-4
(Y, — Y)/(n — k) o4
where » = number of observations (data points)
k = number of coefficients.
Alternatively, it can be written as
F= Ritk—1D (9-5)

(1 — R)/(n — k)

where R? is the coefficient of determination.

Although both forms of this equation give the same numerical value for the
F statistic, Equation (9-5) is generally easier to use because the coefficient of
determination R* usually will have been calculated. In the example of the
CPG Company we have already computed the coefficient of determination as
R? = 0.976. Because we used 17 observations in determining the values of
our parameters a, b,, and b, and because we have three coefficients in our
regression equation, Equation (9-5) yields

___0976/3— 1)  _ 097614\ _
F=a—owemar -5 ~ 0.024(2) = 2849.

For the F statistic the appropriate decision rule concerning significance at the
95% confidence level is that 284.9 be greater than the corresponding value
from the table of F values. Since this value is 3.74, which is much smaller than
284.9, we can conclude that the regression equation is significant.

The second test involves testing the significance of the individual coef-
ficients in the regression equation. Essentially, the question is whether the
value of each coeflicient is significantly different from 0 or whether it occurred
by chance. This test consists of calculating the standard error for each of the
coefficients and then using that error to determine whether the value of the
coefficient is significantly different from 0.

The actual computation of the amount of standard error in each coefficient
is generally included in the computer program that performs multiple regres-
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Table 9-3 Tests of Significance of CPG Company Regression Equation

I test Value from Is Coefficient
Coefficient Standard [ Coefficient Value Table Value
Coefficient  Value Error Standard Error / (= = 0.05) Significant?
a 19.1 51.9 0.37 2.145 No
by 35.7 10.1 3.55 2.145 Yes
b, 10.9 0.97 11.17 2.145 Yes

sion. In most cases these results are given in the form of the ¢ test for each
of these coefficients. This ¢ test can be used directly to determine the signifi-
cance of each coefficient.

The results of the ¢ test computations for the CPG sales example are given
in Table 9-3. As we can see, the ¢ test is simply the value of the coefficient
divided by the standard deviation of that coefficient. Thus, it indicates the
number of standard deviations that the computed value is different from 0.
Table 9-3 shows that for a, the constant term in the regression equation, the
computed value of 19.1 is only 0.37 standard deviation from 0. For b and b,
the number of standard deviations from 0 is much greater, 3.55 and 11.17,
respectively.

The rule for determining whether a coefficient is significantly different from
0 at the 95% confidence level is that the absolute value of the computed ¢ test
must be greater than the corresponding value from the table.

In Table 9-3 it can be seen that the constant term a is not significantly
different from 0, but both coefficients b, and b, are significantly different from
0. The fact that the value of a, the constant term, is not significantly different
from O means that, on the basis of statistics, the manager has no reason to
assume that the value of 19.1 is any more likely than a value of 0.

The third test of significance that the manager may wish to undertake
entails calculating the standard error of a forecast. This allows confidence
intervals to be developed around forecasts based on the regression line.
Generally a 95% confidence interval is used. In Chapter 8 we developed the
equation used for computing the standard error of forecast for simple re-
gression. This equation represented the standard deviation of the size and the
distance that the independent variables are from their mean values. The
standard error of forecast for multiple regression is analogous to this, but
since two or more independent variables are involved, it is difficult to visual-
ize it graphically.

Because of the complexity of computing the standard error of forecast, this
measure is generally included in the computer programs for multiple regres-
sion analysis. Once the standard error of forecast has been obtained, the
manager can use it to develop a confidence interval around any forecast. For
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example, the manager could have a 95% confidence level (assuming that the
past pattern will remain the same during the forecasting phase) that the
actual value would lie within + 2 standard errors from the forecast value.

For the CPG example, the standard error of forecast associated with the
mean value of the independent variables is 40.8. Thus if we wanted to prepare
a forecast using the mean values of automobile production and building
contracts awarded, we could be 95% confident that the actual value would
fall in an interval of roughly + 81.6 units around the forecast value. (Note
that 81.6 equals two times the standard error of forecast.) The exact value of
this interval could be found using the appropriate formula. Finally, it should
be noted that the value + 81.6 is in terms of millions of dollars, since those
are the units of ¥.

With each basic test of significance performed, the user will gain a better
understanding of the muitiple regression equation and the level of reliability
that can be placed on the forecasts developed from it. However, managers
must also be aware that, like all statistical methods, regression is built on
certain assumptions. When those assumptions are violated, the technique can
become unreliable and even misleading when applied in practice.

ASSUMPTIONS INHERENT IN MULTIPLE REGRESSION
ANALYSIS

Four basic assumptions are made each time multiple regression is used in
practice. An understanding of these assumptions and of the conditions
necessary to meet them is important if regression analysis is to be used wisely.

In this section we discuss briefly each of these assumptions, the means of
recognizing possible violations, and the methods of correcting them. Much
has been written about the technical aspects of these assumptions, but this is
generally beyond the scope of this text. The reader desiring additional in-
formation on these four points is referred to the Selected References at the
end of this chapter.

The first assumption in regression analysis is that a linear relationship
exists. This assumption states that the dependent variable is lincarly related
to each of the independent variables. (Technically, the assumption of linear-
ity refers to linearity in the coefficients.) As shown in Chapter 8, a number
of nonlinear relationships can be transformed into linear ones. Thus this
restriction is not nearly so binding in practice as it may appear on the surface.

When the assumption of linearity is not met, the usual way of achieving
linearity is to transform the variables into new variables that do exhibit linear
relationships with Y. As a practical step, the manager is usually well advised
to graph the relationships between the dependent variable ¥ and each
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independent variable X; to determine whether the linearity assumption has
been met. An individual graph for each pair of variables can help identify any
nonlinearities.

The second basic assumption in regression analysis is that of constant
variance of the regression errors. This is often referred to by the technical
name homoscedasticity. The technical term for the lack of constant variance
is heteroscedasticity. This assumption states that the forecasting errors must
be constant over the entire range of observations. In other words, the
residuals e, of the regression remain constant over the entire range from
beginning to end. Figure 9-1(a) describes the kind of pattern that exists when
constant variance is present. Figure 9-1(5) describes a situation in which the
residuals increase as the value of the independent variable increases, and thus
the assumption of constant variance is not met. This type of nonconstant
variance is found often in real forecasting situations. Figure 9-1(c) presents
a different kind of nonconstancy in the variance. Thus to meet the assump-
tion of constant variance, a pattern like that shown in Figure 9-1(a) must
exist.

The third basic assumption in regression is that the residuals are indepen-
dent (random) of one another. This means that each residual value is in-
dependent of the values coming before and after it. In technical terms, when
this assumption is not met, it is said that serial correlation (or autocorrela-

Dependent variable, ¥V

Independent variable,
fa}
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th) (c)
Figure 9-1 Constant Variance Assumption in Regression Analysis.
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tion) exists among successive residual values. The means of identifying
independence of the residuals include a graphical representation of those
values, examining the sign (plus or minus) of the residuals, or computing the
Durbin-Watson (D-W) statistic. Figure 9-1(c), for instance, represents not
only the lack of constant variance, but also a pattern in the residuals in which
their signs change from plus to minus and back to plus as the value of the
independent variable increases. The (D-W) statistic, which can be used to test
for the presence of autocorrelation, is beyond the scope of this book,
although a value of this test between about 1.5 and 2.5 implies an absence of
autocorrelation among the residuals. Again computer programs usually
include the computed value of the D-'W statistic and the corresponding ranges
(from a table of D-W values) that indicate whether or not the residuals are
independent (random).

When the residuals are not independent, an important independent
variable may have been omitted or a nonlinearity may exist among the
variables used in the regression equation. Thus, rather than the equation
capturing the basic underlying pattern with the residuals representing
random errors, those residuals still include part of the basic pattern. If that
pattern can be captured by the regression equation, more accurate forecast-
ing is possible.

Two remedies are commonly used to eliminate autocorrelation in the
residuals. First, an additional independent variable may be required to
capture some of the variation in the dependent variable that could not be
explained by existing independent variables and thus resulted in systematic,
nonrandom errors. Second, the wrong functional form (such as, linear
instead of exponential) may have been used in the regression equation. If
neither a new variable nor a transformation of an existing variable can be
devised that will eliminate autocorrelation, the method of first differences is
often useful. Essentially, this method finds a new variabie that has as its
observed value the difference between each subsequent pair of observations
for all variables. Thus if a series of observations with values 5, 8, 6, 4, and
7 were observed, the first differences for this set of data would be 3, —2, —2,
and 3. If the first differences are computed for each of the variables in the
regression equation, the regression coefficients can be recomputed using
those differences as the observed values. (See Chapter 7, where the method
of differencing was discussed as a way of eliminating trends from the data.)

When the independent variables exhibit strong autocorrelation, the vari-
ances are under- or overestimated, which makes the tests of significance
invalid and the value of R? erroneous. The values of the regression coefficients
a, b, b,,. .. ,b, will be correct statistically and can be used, but nothing can
be said about their significance as long as the residuals are autocorrelated.
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The fourth basic assumption that the manager needs to consider in
applying multiple regression analysis is that the residual values, if plotted,
should be approximately normally distributed. This assumption is generally
not restrictive, since the residuals represent the outcome of a large number of
unimportant factors that infiuence the dependent variable, each to a refative-
ly insignificant degree.

Thus, on the average, the influence of the factors will be canceiled out if
the right model has been used. To check the assumption of normality one
should plot the residuals and make sure they form a bell-shaped (normal)
curve. If this assumption is not met, the tests of significance and the con-
fidence intervals developed from them may be incorrect.

A final practical concern with multiple regression is the possibility of
multicollinearity. Multicollinearity can develop when two or more of the
independent variables are highly correlated. Technically the result is a near
singular matrix, which has the same effect as trying to divide one number by
another extremely small number. (You may recall that dividing a number by
0 gives a result of infinity.) If multicollinearity exists, the result is extremely
large numbers that cannot be handled by the computer. The regression
coefficient and all other output from the computer may, therefore, be erro-
neous. It should be stressed that multicollinearity is a computational (not a
multiple regression) problem, because present-day computers are not big
enough to handle the large numbers involved when two or more independent
variables are highly correlated.

Multicollinearity is a real and frequent problem in economic and business
data because of the high correlation between the different factors, such as
population, GNP, personal disposable income, corporate sales, and corpor-

-ate profits. One should be aware of its existence when selecting independent

variables and when actually collecting data. The goal is to use independent
variables that are not highly correlated (as a rule of thumb, the correlation
between the independent variables included in the regression should not
exceed + 0.7 or be smaller than —0.7). If they are highly correlated, they
provide redundent information that does not improve the explanatory power
of the regression. [See Chapter 6 of Makridakis, Wheelwright and McGee
(1989) for a more complete discussion of multicollinearity.]

USING MULTIPLE REGRESSION ANALYSIS IN PRACTICE

In the preceding sections of this chapter we have talked about the many
considerations involved in applying multiple regression analysis and showed
how the technique can be used in a straightforward example. In this section
we bring together these different aspects relating to the application of regres-
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sion analysis by developing a set of procedures that the manager can use and
showing how these procedures can be used in a specific situation.

The fact that regression analysis is a forecasting technique based on
understanding and measuring the extent of relationships means that the

‘manager must identify those factors that appear to influence the variable to

be forecast. One of the great advantages of multiple regression is that a
number of different relationships can be hypothesized and tested with little
effort when a computer program is available for doing so. Thus, the
procedure that we outline will really go beyond the formulation of a regres-
sion equation and will describe how in a specific situation a manager might
hypothesize certain relationships and then use regression analysis to deter-
mine which is the most appropriate. Nine basic steps are listed and described.

|. Formulation of the Problem. First the manager must state what the
problem is and what it is that will be explained or predicted. This formulation
should begin with a description of the decision-making situation and an
identification of the variable or variables to be forecast rather than with the
forecast itself. At the end of the formulation step a number of independent
variables should have been identified and the dependent variable to be
forecast should have been defined. This can be done by talking to people who
are actually working in the area of concern and who are forecasting the
dependent variable. Their experience and the factors they use when forecast-
ing need to be considered when the manager is formulating the problem and
hypothesizing possible solutions.

2. Choice of Economic and Other Relevant Indicators. Although
problem formulation should identify some of the independent variables to be
included, it is also necessary to identify additional possible influential factors
and to determine which of them would be suitable for inclusion in the
regression equation. This suitability must be based on the availability of data
not only for historical periods but also for future periods for which the
forecast is to be prepared. Some of the factors that are generally relevant
include historical data relating to the company’s operations and economic
series relating to the general economy and the industry. Theoretically derived
variables, as well as those identified through experience, must also be con-
sidered.

3. Initial Test Run of Multiple Regression. 'The initial run should include
all the data on the independent and dependent variables and several trans-
formations in case some of the relationships are not linear ones. It also may
include the testing of a few plausible regression equations to observe the
results that can be obtained. A useful output of this test run is the simple
correlation matrix used in step 4.
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4.  Studying the Matrix of Simple Correlations. Careful selection of the
variables, or their possible transformations, to include in the regression
equation is fundamental to developing better forecasts from this method. The
key is to pick independent variables (1) whose simple correlations are not
bigger than 0.7 or smaller than — 0.7 and (2) that add to the explanatory
ability of the regression equation. The correlation coefficients between the
independent and dependent variables being selected should be sufficiently
larger than 0. (It should be remembered that the rule of thumb concerning
multicollinearity does not always hold; this means that a value smaller than
0.7 or larger than — 0.7 may result in multicollinearity, while a value larger
than 0.7 or smaller than — 0.7 may not.) At the end of this step the manager
should have identified five or six aiternative regression equations that seem
promising and can be tested further.

5. Deciding among Individual Regressions. After a number of regression
equations have been considered in step 4, a computer program should be used
to estimate the coefficients of those regression equations on the basis of the
data. For each of these regression equations, the manager can consider the
significance of the entire regression, of the regression coefficients, and of the
standard error of forecast. Once a regression equation has been found whose
independent variables significantly influence the dependent vanable, the
usual procedure is to attempt to increase the R value by introducing addi-
tional independent variables, checking each time to be sure that the tests of
significance are still met.

6. Observing the Value of R?. Once all regression coefficients have been
found to be statistically significant and the standard error of the forecast is
considered acceptable, the value of R? needs to be considered. R? tells us the
percentage of variation in the dependent variable explained through the
regression equation. If this percentage is small, the regression equation does
not explain enough of the variation in the dependent variable. More indepen-
dence may be required to explain the vanation in the dependent variable and
improve the value of R?. The R? value provides a subjective measure that tells
us the degree of the explanatory power of our regression equation. In some
cases, as in medical research, unless R?is practically equal to 1, the regression
equation cannot be used. In other cases even a small value of R* can be
accepted as long as all regression coefficients are statistically significant and
step 7 below has been completed.

7. Checking the Validity of the Regression Assumptions. Once a good
equation (one that passes steps 5 and 6) has been identified, the manager must
consider whether such a regression equation meets the four assumptions
outlined in the preceding section. If it does not, appropriate steps should be
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taken to correct violations of the assumptions, or additional regression
equations must be developed and tested. It must be remembered that high
values of R? are meaningless when the D-W statistic is not in the appropriate
range. If the test is not satisfied, it is advisable not to trust the regression
equation no matter how large the value of R?. Similarly, violation of the
other assumptions can result in problems whose magnitude, however, is not
as serious as when the D-W test indicates that the residuals are not random.

8. Preparing a Forecast. Once the manager has found a regression
equation (1) whose regression coefficients are statistically significant, (2) that
gives a sufficiently high value for R, and (3) that meets the assumptions
inherent in regression, he or she can use the equation for forecasting
purposes. In doing so, he or she should consider the confidence interval for
individual forecasts and the accuracy of the values for the independent
variable. As we pointed out earlier, most forecasts are based on estimated
values of the independent variables rather than on actual values. Thus their
validity needs to be determined, because if the forecasts of the independent
variables are in error, the forecast of the dependent variable Y is also likely
to be in error.

9. Using the Regression Equation to Increase Understanding. Quite often
the biggest benefit from regression analysis is not in forecasting, but in
explaining and helping us understand better some situations of interest.
Consider, for instance, the regression equation we found for forecasting
CPG?’s sales. This equation was

¥ = 19.1 + 357X, + 109X,.

Suppose that the value of X, (automobile production) could not be forecast.
Is the regression equation useless? Not at all. We know that for each addi-
tional million cars produced, the sales of CPG will increase by $35.7 million.
This can be useful information by itself, because it can help us plan more
effectively even though accurate forecasts of automobile production may not
be available.

AN APPLICATION OF REGRESSION

As an example of how the preceding steps might be applied in developing
an appropriate regression equation for forecasting, let us consider a company
whose marketing manager wishes to forecast corporate sales for the coming
year and to understand better the factors that influence them. The first step
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is to determine just why this forecast is needed and how it will be used. We
will suppose that the marketing manager wants it for at least four reasons:
(1) to supply her with estimates needed as her part in the corporate planning
activity, (2) to give her an idea of the kind of staffing requirements she will
have in sales and sales service to handle the company’s increased sales, (3) to
help in planning budget allocations for advertising, dealer discounts, and so
on, and (4) to help her make better policy decisions concerning price, adver-
tising, and product development expenditures.

With this initial identification of the problem, the marketing manager
might well sit down with the sales manager and others in her marketing
organization to determine the factors that might affect the company’s sales.
Let us suppose that they come up with the following model:

sales = f(personal disposable income, dealers’ allowances, prices,
product development expenditures, capital investments,
advertising, sales expenses, total industry advertising, random

effects).

Clearly, some of these factors will have a more impertant effect than others
on the company’s sales; others may turn out to be unimportant. Since any
one of them, however, may have an important impact, it is useful to gather
'data on all of them at this early stage in the process. Thus the next step is to
gather the information on these eight independent variables as well as on the
dependent variable, company sales. Table 9-4 presents semiannual data
covering the period from 1970 through 1988.

After these data have been collected, an initial multiple regression run can
be made. As a starting point the regression equation

¥ = a+ 5X,+5,X,+ - + b X,

can be used. This equation contains all eight independent variables. Some
may not be important, but including them all initially gives a good starting
basis. The results of applying a computer program by using the foregoing
regression equation and the data in Table 9-4 are shown in Table 9-5. The
second column in Table 9-5 lists the value of the constant term of the
equation and the coefficient for each of the eight independent variables.
As can be seen in Table 9-5, not all the coefficients in this regression
equation are significant. Looking at the ¢ ratios in column 4 and comparing
them to the corresponding values from the table, one can determine which
coefficients are significant at the 95% level. It can be seen that independent
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Table 9-5 Regression Equation for Semiannual Sales

M @ (3 &) (5
Variable Parameter Value Standard Error ¢ Ratio Significant
Constant 2926.09 612.386 4.778 Yes
1 = PDI 3.809 1.528 2.491 Yes
2 = dealer allowances 5.064 3.138 1.613 No
3 = price —-17.126 7.998 —2.141 Yes
4 = product developr’nent —10.258 6.274 —1.635 Ne
expenditures
§ = capital investments 1.515 0.746 2.029 Yes
6 = advertising 8.053 1.778 4.528 Yes
7 = sales expenses 3.864 2.702 1.430 No
8 = total industry -0.539 0.377 —1.428 No
advertising

R = 0.912; standard deviation of regression = 243.247,
Durbin-Watson statistic = 2.39146; F test = 1144

t value from table (« = 0.05) = L.96.

F value from table (2 = 0.05) = 2.27

variables 2, 4, 7, and 8 (dealer allowances, product development expen-
ditures, sales expenses, and total industry advertising, respectively) are not
significantly different from 0 in terms of their impact on sales. This result
could be due either to a lack of a significant relationship between variables
2,4, 7, and 8 and Y or it could be due to multicollinearity between some of
the variables, since both R? and the F test are large.

At this point the marketing manager can examine the simple correlation
matrix shown in Table 9-6 to see how each independent variable is related to
the company’s sales. The bottom line of this table shows these correlations
between the company sales (dependent variable) and each of the independent
variables. We can see that variables 2, 4, and possibly 8 have a relatively small
correlation with company sales. Variable 7, however, whose coefficient was
not significant in Table 9-5, scems to have a fairly high correlation with
company sales. The problem here is that multicollinearity does exist between
variables 1 and 7. (The coefficient of correlation is 0.903.) This means that we
need to drop either 1 or 7 from our regression equation. If we examine the
correlation between sales and variable 1 and sales and variable 7, we see that
the correlation is higher with variable 1. Thus we choose to eliminate variable
7 from our regression equation.

The marketing manager can now test an additional regression equation in
which variables 2, 4, 7, and 8 have been eliminated. The new equation to be



Table 9-6 Simple Correlation Matrix for Semiannual Sales

©® @] ® )

&)

Variable Name

@ 3 @

(1)

Total

Industry  Company

Advertising

Sales

Advertising  Expenses

Capital
Investments

Product
Development

Dealer
Allowances

Sales

Price

PDI

Variable

0.742
0.009
0.285
0.031

—0.020
—0.145
—0.182
—0.128
—0.063
—0.197
-0.019

0.903

—0.051

0.199
—-0.119

0.131

0.160
0.005

—0.069 0.555
0.438

1.000

—0.069

0.149
—0.063

0.028

1.000
0.028

2

0.630

0.252

1.000
0.438
—0.063

0.555

0.361

0.102
0.277

0.217

1.000

0.217

0.005
—0.149
-0.119
—0.051
—0.145

0.160
0.131

4
5
6

0.410

0.228

1.000

0.277

0.526

0.667
—0.175

0.132

1.000
0.132
—0.197

0.102

0.361
—0.128

0.252

0.199
0.903
—0.020

1.000

-0.175

000
—0.019

1.

0.228
—0.063

0.630
—0.182
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1.000

0.667

0.526

0.410

0.031

0.009 0.285

0.742
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tested can be written as
7 = a+ b X, + bXs + bsXs + beXs.

The results for this regression analysis are presented in Table 9-7. As can
be seen from this new regression equation, all the # ratios are statistically
significant, which indicates that the term and each of the regression coef-
ficients (b,, by, bs and bg) is significantly different from 0. If the F test is
greater than 2.69, the entire regression equation is significant. Finally, the
value of R? is equal to 0.781, which indicates that 78.1% of the fluctuations
in sales are explained by the regression equation shown in Table 9-7. In
practical terms the accuracy of this equation can be seen from Table 9-8,
which gives the residuals (the difference between actual values and those
predicted by the equation) and expresses those residuals as a percentage of
the actual values. Since the greatest error is 14.76%, it can be assumed that
the regression equation is quite adequate in explaining past sales. Further-
more, the standard deviation of regression has a value of about 260. This
means that we can be 95% confident that our actual value will lie within
+ $520,000 (+ 2 standard deviations, that is + 260,000 of the forecast value

in the area of the mean. ]
Now the regression equation determined in Table 9-7 can be checked to see

whether it conforms to the four basic assumptions. The equation does
represent a linear relationship, the tests of significance are satisfied, the Ris
good, and it appears that the regression equation is a good representation of
this situation. The residuals are about constant. They are neither larger nor
smaller in the beginning or at the end, as can be seen from Figure 9-2, which
plots the residuals over time. The value of the D-W test is 2.31, which is close
to the allowable range of 1.72 to 2.28. Finally, the residuals are about
normally distributed, as shown in Figure 9-3, which plots the residuals in the
form of a histogram.

The regression equation can now be used to prepare a forecast. This
requires that values of X\, X, Xj, and X be estimated and then substituted
in the regression equation to compute an estimate for Y. The equation also
can be used to understand better the relative impact of at least a handful of
factors on company sales. The precise equation taken from Table 9-7 is

7 = 327655 + 5.70X, — 15.18X; + 1.55Xs + 7.57X,

where X, = personal disposable income
X, = price per ton (in dollars)

X, = capital investments (in thousands of dollars)
Xs = advertising (in thousands of dollars)
¥ = semiannual sales (in thousands of dollars).



Significant
Yes

t Ratio
8.32276

Standard Error
393.68500

Dependent Variable is 9 = Sales

Parameter Value
3276.55

onstant

Table 9-7 Regression Equation for Semiannual Sales

Variable

Table 9-8 Regression Results for Semiannual Sales (Predicted.

8883 Residuals and % Errors)
R
Actual Predicted Residuals Percentage Error
5540.39 5349.89 190.501 3.43841E-02
=238 5439.04 5180.44 258.598 4.75449E-02
SEER 4290.00 4468.90 —178.895 —4.17005E-02
AR 5502.34 5620.87 —118.530 —2.15417E-02
4871.77 5235.68 ~363.912 — 7.46982E-02
4708.08 4505.83 202.256 4.29594E-02
4627.81 4539.03 88.783 1.91847E-02
& 4110.24 4717.04 — 606.794 —0.14763
} 4122.69 3991.78 130.914 3.17545E-02
& 4842.25 4543.44 298.814 6.17097E-02
805 S 5740.65 5509.08 231.570 4.03385E-02
- & 5094.10 5069.99 24.105 4.73197E-02
S28RE 5383.20 5311.28 71915 1.33593E-02
° 4888.17 4482.32 405.854 8.30277E-02
8 4033.13 4198.47 —165.336 —4.09943E-02
g 4941.96 5054.38 —112.418 — 2.27476E-02
he 5312.80 5254.56 58.234 1.09612E-02
9 5139.87 5088.84 51.020 9.92636E-03
2 4397.36 4945.73 — 548.365 —0.124703
o 5149.47 5376.45 —226.977 —4.40777E-02
g 5150.83 4733.14 417.690 8.10918E-02
8 4989.02 5314.13 —325.107 —6.51645E-02
. 5926.86 5977.36 — 50.498 — 8.52030E-03
o wo BF 4703.88 4669.05 34.821 7.40262E-03
NECYs T 5365.59 5132.04 233.550 4.35273E-02
Rt ! 4630.09 4752.48 —122.386 —2.64328E-02
- 28 5711.86 5603.36 - 108.498 ‘ 1.89951E-02
! 2 5095.48 5363.63 —266.150 — 5.22326E-02
h) 6124.37 5§702.99 421.383 6.88044E-02
Tz 4787.34 4728.74 58.606 1.22419E-02
=P 5035.62 5248.74 —213.121 —4.23227E-02
S, 5288.01 5396.88 —108.870 —2.05881E-02
2 y293 4647.01 4682.28 — 35263 —7.58850E-03
§ 232 ‘; I 5315.63 5429.94 ~114.307 —2.15039E-02
E °2 0 6180.06 5968.57 211.487 3.42208E-02
Lawls2g 4800.97 4922.02 —121.043 —2.52122E-02
Eg¥ 2 = E 5512.13 5287.97 244.161 4.06669E-02
— 3 g & 8 S 5272.21 5316.98 ~ 44.769 —8.49161E-03
nEIICE3
o "§§§
O~mumnokd Iy
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Figure 9-2 Plot of the Residuals for the Company Sales Regression Showing Their
Constancy over Time.

The R? value of 0.781 tells us that the regression equation explains 78.1%
of the total variation, that is, that variations in X;, X;, X;, and X, explain
78.1% of the variation in the sales. The marketing manager must know the
levels of precision and confidence that are associated with the values she
inserts for the independent variables, to ensure that her forecast of semian-
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Figure 9-3 Histogram of the Residuals for the Company Sales Regression Showing that
They Are Approximately Normally Distributed.

Summary 207

nual sales will be as accurate as this regression equation allows. Thus the
same types of approaches used to increase the accuracy of the sales forecast
need to be applied to increase the accuracy of the estimates of the indepen-
dent variables.

In addition, the marketing manager can gather a great deal of information
from the regression equation. For instance, the constant value 3276.55 means
that this portion of company sales is not explained by fluctuations in the four
independent variables. If this constant term is large, it suggests that there may
be additional independent variables that might explain more of the depen-
dent variable. Identifying such variables also may increase the value of R?,
which indicates that 21.9% (100 — 78.1) of the total variation in sales is still
unexplained.

Furthermore, the manager knows that as personal disposable income
increases by $1 million (assuming that the remaining variables remain
constant), company sales will increase by $5700. This is important informa-
tion that might be used, for instance, for long-term planning purposes.
Similarly, when capital investments and advertising increase, so do sales. It
is interesting to note that for every dollar spent on advertising (assuming all
other factors remain constant), the return is $1.55 in current period sales.
This means that for every dollar spent on advertising, the return on sales is
55 cents more than what was spent, which is important information to
consider in deciding how much to spend on advertising. Finally, it can be seen
that the coefficient corresponding to price is negative. This means that when
the price increases, sales will decrease. In fact, a $1 .00 price increase decreases
sales by $15.18 million. Similarly, a $1.00 price decrease will increase sales by
$15.18 million. In spite of the caution that must be exercised in interpreting
and using these results, regression analysis is an extremely powerful tool that
can be used in a wide range of situations for both understanding and
forecasting (see also Chapter 15).

SUMMARY

In the preceding sections we have considered some of the details of
applying multiple regression in practice. There are also a number of general
considerations that the manager should keep in mind in evaluating the
appropriateness of this technique in comparison with other techniques. The
major strength of multiple regression analysis is that it is an explanatory
method that allows us to determine (estimate) virtually any kind of linear
relationship that might exist between a dependent and one or more indepen-
dent variables.

There are, of course, some drawbacks to the use of multiple regression.
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One is that it requires estimates for the independent variables before a
forecast can be made. Another is that most managers are reluctant to get into
its details and to understand fully the power that it can bring to bear on a
forecasting problem. (We hope this chapter will show that the method is very
understandable and that by mastering some of the basic principles of its
application, managers can use it wisely in a broad range of situations.)

Another potential drawback is the tendency to think that any time a high
R’ exists, the regression equation is automatically a good one. For this to be
the case, the assumptions of regression must be satisfied and sufficient data
must be available (at least 30 observations). A last point is that regression can
be used reliably when and only when the relationship between the indepen-
dent variables and the dependent variable does not change. If that relation-
ship does change, it becomes necessary to collect a new set of data in order
to redetermine the regression equation.

Given the substantial experience that has been gained by researchers and
practitioners alike in the application of multiple regression, it is not surpris-
ing that a number of variations and modifications have been developed. Such
things as stepwise regression (automatically selecting and then evaluating
additional variables to be added to the basic regression equation), lead and
lagged variables (shifting the time reference to create new variables), and
dummy variables (creating variables with a value of 0 or 1, for example, to
represent a seasonal factor) are just a few of these. The interested reader can
pursue these in Makridakis, Wheelwright, and McGee (19895 and in Selected
References.
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