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Abstract This paper deals with the path planning
problem of a team of mobile robots, in order to
cover an area of interest, with prior-defined obsta-
cles. For the single robot case, also known as single
robot coverage path planning (CPP), an O(n) optimal
methodology has already been proposed and evalu-
ated in the literature, where n is the grid size. The
majority of existing algorithms for the multi robot case
(mCPP), utilize the aforementioned algorithm. Due to
the complexity, however, of the mCPP, the best the
existing mCPP algorithms can perform is at most 16
times the optimal solution, in terms of time needed for
the robot team to accomplish the coverage task, while
the time required for calculating the solution is poly-
nomial. In the present paper, we propose a new algo-
rithm which converges to the optimal solution, at least
in cases where one exists. The proposed technique
transforms the original integer programming prob-
lem (mCPP) into several single-robot problems (CPP),
the solutions of which constitute the optimal mCPP
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solution, alleviating the original mCPP explosive com-
binatorial complexity. Although it is not possible to
analytically derive bounds regarding the complexity of
the proposed algorithm, extensive numerical analysis
indicates that the complexity is bounded by polyno-
mial curves for practical sized inputs. In the heart
of the proposed approach lies the DARP algorithm,
which divides the terrain into a number of equal areas
each corresponding to a specific robot, so as to guar-
antee complete coverage, non-backtracking solution,
minimum coverage path, while at the same time does
not need any preparatory stage (video demonstration
and standalone application are available on-line http://
tinyurl.com/DARP-app).

Keywords mCPP · Multi-robots · Complete
coverage · Minimum coverage paths · Terrain
sub-division

1 Introduction

Since the 1970s, autonomous robots have been in
daily use at very low and very high altitudes, for
deep-sea and space exploration and in almost all air-
crafts [20]. Today, in the era of multi robots, many
of the robotic challenges, with a definite solution for
the case of single robot, have to be revised so as
to optimally incorporate the multi-robot dynamics.
One of the fundamental problems in robotics is to
determine an optimal path involving all points of a
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given area of interest, while avoiding sub-areas with
specific characteristics (e.g., obstacles, no-fly zones,
etc.). In the literature, this problem is often refer-
eed to as coverage path planning problem (CPP),
but can also be found as sweeping, exhaustive geo-
graphical search, area patrolling etc. This task is
directly related with a plethora of robotic applications,
such as vacuum cleaning robots [1, 26], autonomous
underwater vehicles [22, 23], unmanned aerial vehi-
cles [31], demining robots [4], automated harvesters
[28], planetary exploration [6], search and rescue
operations [34].

The usual abstraction of the problem, consists of a
robot with an associated tool (e.g. sensor, actuator),
which is able to spatially cover at least the size of the
robot itself. Therefore, one of the most common area
representation techniques is to separate the field into
identical cells (e.g. in the size of robot), such that the
coverage of each cell can be easily achieved. Appar-
ently, for any arbitrary shaped area, the union of the
cells only approximates the target region, thus this
technique, which is also adopted in our approach (see
Section 3), is termed as approximate cellular decom-
position. A comprehensive analysis of the different
area decomposition techniques along with the major
representatives from each class can be found in [11].

During the previous decade, researchers focus their
effort to the aforementioned single robot coverage
planning problem (inside an already known terrain),
producing a lot of different approaches (e.g. [10, 36,
38]). One of the dominant approaches is the span-
ning tree coverage (STC) algorithm [18], which is
able to guarantee an optimal covering path in lin-
ear time, constructing a minimum spanning tree for
all the free cells. The term optimal encapsulates that,
the generated path does not revisit the same cell
(non-backtracking property), completely covers the
area of interest and it achieves all the above with-
out any preparatory effort (the robot can be initiated
at any non-occupied cell). This major accomplish-
ment comes with the assumption that the operation
area does not get “more narrow” than the double of
the robot’s size. Our approach utilizes the STC algo-
rithm, thus it inherits this requirement, which is more
formally described in the Section 4 of the paper.

The recent advances in robotics technology, both in
the hardware and in the associated software, expand
the variety of robots that can be deployed for a cover-
age task. As a consequence, the usage of multi-robots

teams in the coverage path planning problem (form-
ing the multi-CPP or mCPP problem), has recently
received a lot of attention. Unfortunately, the mCPP
problem was proven to be extremely more difficult
to be adequately addressed. As a matter of a fact,
solving mCPP with the minimal covering time has
been proven to be NP-hard [39]. Previous investi-
gations attempt to overcome the NP nature of the
problem by proposing algorithms that solve a relaxed
version of the original mCPP problem, mostly focus-
ing only on one of the main coverage objectives
(see Section 2 for more details). Moreover, in the
mCPP problem, besides the optimality features that
characterize a solution and derived directly from the
single-CPP, the challenge to design the paths in a
way to fully exploit the available multi-robot dynam-
ics arises. In essence, this condition is one of the holy
grails in any multi-robot system, since the unlock of
such a feature would allow the fully cooperation of
the robots with the ultimate utilization of their capa-
bilities. In many of the proposed approaches, the fully
exploitation of multi-robots dynamics is sacrificed for
the sake of the main coverage objective (complete-
ness, non-backtracking). Additionally, in multi-robot
approaches, an often omitting issue is the needed
cost/time in order to “transfer” the robots in their start-
ing cells, excluding the initial robots location from the
problem. Overall, the best of the proposed approaches
can achieve coverage time which can be 16 times
greater than the optimal one, in strictly polynomial
time.

In the present paper we propose a methodology that
is able to deliver the optimal solution for the mCPP
problem - at least where one exists- in terms of cov-
erage time, without overlooking any of the aforemen-
tioned aspects. In contrary to the traditional addressing
of this problem [14] (usually referred as allocate-
then-decompose or decompose-then-allocate), where
the building and allocation of the tasks are tack-
led in a separated fashion [29], a new method in
which the building task is robot-oriented is presented.
Simultaneously, extended numerical analysis in realis-
tic environments indicates that the computational time
is polynomial in the size of grid times the #robots.
In essence, the original mCPP is transformed into an
optimization problem, where the satisfaction of a well-
defined set of constraints will eventually give rise to
the optimal solution. More precisely, the proposed
scheme is separated into two phases.
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– First, the available cells are divided into distinct
classes, as many as the #robots, by utilizing a
constraint satisfaction scheme. The aim of this
clustering is to preserve the following attributes
a) the complete coverage, b) the operation with-
out any preparatory effort and - most importantly
- c) the fully exploitation of multi-robots dynam-
ics. In the heart of the proposed algorithm, lies the
Divide Areas based on Robot’s initial Positions
(DARP) algorithm which is able to produce the
optimal cells assignment with respect to the initial
positions of the robots. The later can be achieved
by employing a - specifically tailored to the prob-
lem at hand - cyclic coordinate descent approach
[35] with the known convergence properties.

– During the second phase, the STC algorithm
designs the optimal path for every robot’s cluster,
in a distributed manner.

The outline of the paper is as follows. The related
work is described in Section 2, presenting alternative
works on the mCPP. The mCPP problem is trans-
formed into an optimization problem in Section 3,
introducing all the essential notation. In Section 4 are
briefly summarized the main steps of the STC algo-
rithm, regarding the optimal solution of CPP problem.
The findings of that section are going to be utilized in
order to relax the original mCPP problem in Section 5.
On the same section, are formally described the essen-
tial conditions of the optimal solution. In Section 6
is proposed the DARP algorithm, with a comprehen-
sive discussion about its performance. The complete
scheme for the mCPP problem is outlined in Section 7.
As proof of concept, in Section 8 is presented the per-
formance of the proposed scheme in comparison with
two of the state-of-the-art algorithms, regarding the
mCPP problem. Finally, the concluding remarks are
drawn in Section 9 together with an outlook to the
future work.

2 Related Work

2.1 Multi-Robot Coverage Path Planning Problem
Inside Known Terrain

Despite the fact that mCPP is a relative young field
of research, there is a plethora of works that attempt
to address the limitations and the restrictions of this

problem. An in-depth discussion of this field is beyond
the scope of this paper, thus, in oder to construct a
more appropriate and homogeneous pool of alternative
works, only publications that are in line with our prob-
lem formulation (Section 3) are included. For a more
detailed and complete survey with regards to the latest
achievements on the CPP/mCPP problem the reader
should refer to [19].

The authors in [21] transformed, for the first time,
the single robot Spanning Tree Coverage (STC) Algo-
rithm [18] into a method that is able to incorporate
team of robots. Their centralized algorithm (referred
as MSTC) guarantees the complete coverage of the
operational area while avoids a-priori known obsta-
cles. Moreover, the non-backtracking version pro-
duces a solution that visits every cell only once, while
it is robust to robot’s failures. Unfortunately, the path
length for each robot is critically depended on the ini-
tial position of the robots and indeed in the worst case
scenario, the maximum path length for the one robot
is almost equivalent to that of a single robot case,
even though there may exist alternative optimal paths
configurations.

The same authors, in an attempt to alleviate the
aforementioned shortcoming, proposed an enhanced
version (referred as OPT-MSTC) [5], in which the
form of the spanning tree is modified so as to mini-
mize the maximum distance between every two con-
secutive robots along the spanning tree path. This
technique performs statistically better than the random
generated tree, but again without any guarantee with
respect to the initial robots’ positions.

An alternative technique that also utilizes span-
ning trees, was presented in [39]. In this work, the
authors provide an upper bound on the performance
of a multi-robot coverage algorithm on known ter-
rain, guaranteeing a performance at most sixteen times
the optimal cost, preserving at the same time the
key feature of complete coverage. Although the non-
backtracking guarantee has been now removed, the
MFC algorithm performs significantly better from
both MSTC and OPT-MSTC in terms of minimizing
the maximum robot’s path length, revealing that solu-
tions without the equality constraint in the robot’s path
length are far away from the optimal team utilization.

The authors in [17], developed a methodology that
attempts to solve the problem of patrolling a known
environment by a team of mobile robots, which can
be translated to visiting all the points of the terrain
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with a certain frequency. Indeed, the patrol problem is
closely related to the mCPP problem, therefore solu-
tions that are used for patrolling might be used for
mCPP as well. In this work, the authors first produce
a minimal cyclic path, similar to [18], that traverse
every single cell of the operation area and afterwards
they search for the best “new” robots initial positions.
These new locations are calculated so as to minimize
the maximum distance from their initial positions and
these to-be-traveled distances to be more or less the
same. Unfortunately, this separation into two indepen-
dent tasks, restricts the performance of the proposed
algorithm. As a matter of fact, there is no upper bound
regarding of number of the cells that are going to be
visited in the worst case scenario, in order to fulfill
the condition about the equality in robots’ paths, even
in cases where an alternative optimal solution actually
exists.

2.2 Area Division, for Multi-Robot Tasks

This subsection presents the dominant area division
techniques, in order to assist multi-robot tasks - not
limited to coverage.

An interesting method that falls in this class, has
been presented in [25]. The operation area is divided
using sweep-line approach and in the sequel, each sub-
area is assigned to the most appropriate robot, based
on their relative capabilities. However, the approach
assumes as essential the unrealistic condition that
the robots are initially located on the boundaries of
the operation area. Moreover, the presented algorithm
considers only convex areas without obstacles.

In [8], the authors proposed a complete approach
for multi-UAV area coverage problem with a direct
application to the task of remote sensing in agri-
culture. As first step, the authors proposed an area
subdivision method, which expands the well-known
alternate-offer protocol [30]. This technique, aims
to perform the tasks of area division and assign-
ment simultaneously, but in a distributed effective
way. Despite the well establishment of the method
in terms of implementation details, there is no per-
formance guarantee. The authors state that the final
subareas assignment is a perfect equilibrium, but there
is no reference on how the approach overcomes sub-
optimal cases, which will be inevitably appeared in
cases of non-convex areas or “difficult” initial robots’
placement.

The authors in [3], presented an alternative method
using a heuristic algorithm to tackle the problem of
arbitrary polygon division. Despite the fact that the
results are rather promising and their algorithm runs in
polynomial time, the produced solution has two main
disadvantages. On the one hand, there is no specific
guarantee about the optimality of the area division,
while at the other hand the initial robots’ positions are
not taking into account.

The algorithm described in [29], aims to achieve
an enhanced multi-robot exploration by dividing
workplace into separated regions for each avail-
able robot. The authors, by employing the K-means
algorithm, divide the available terrain into distance-
related, convex subregions and afterwards apply a
robot-subregion assignment mechanism to the trans-
formed linear programming problem, utilizing LP-
solve software [2]. Unfortunately, this two stage pro-
cedure may end up with highly sub-optimal solu-
tions, where it might be required for the robots to
travel long distances (in comparison to the whole
operation area) in order to reach their assigned
subareas.

Many of the state-of-the-art approaches regarding
the area division problem in multi robot context (e.g.
[9, 13, 16]), have been relied on the Lloyd’s [24] algo-
rithm, with the known convergence properties [15],
and/or the Voronoi partitioning [7]. Although, these
approaches seem suitable for the mCPP problem, and
especially for the area division problem, they differ
at a quite important aspect. These approaches seek to
answer the following question: “Which are the most
preferable positions to place the robots, so as to cover
the non-occupied space with their on-board sensors?”
On the contrary, in the present paper the term “cover”
implies that the respective robot has to physically visit
the corresponding assigned area. The aforementioned
approaches are better suited for problems, such as to
position a team of robots in a terrain so that any loca-
tion is as close as possible to at least one robot [12]
or to optimally monitoring a dynamic event with het-
erogeneous sensory interest (e.g. oil spill) [32]. Thus,
the majority of these approaches solves the area divi-
sion problem independently of the robots/agents initial
positions. Therefore, the direct appliance of these
algorithms to the mCPP problem may lead to quite
sub-optimal results as the robots’ areas may be equally
divided, but the time/cost to reach these sub-areas has
been left out of the equation.
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The fine-grained analysis of the related literature
clearly indicates that there is room for contributions,
so as to enhance the fully exploitation of the robots
capabilities without jeopardizing important features
of the already produced solutions. According to this
necessity, this work proposes a grid-based multi-robot
path planning algorithm inside known terrains, per-
forming an area subdivision, according to both the
number of robots and to their initial locations. In a
subsequent stage, the exact paths inside each robot-
exclusive area are defined in a completely distributed
manner. The proposed algorithm is an approximate
polynomial-time algorithm (for practical sized inputs)
for the mCPP problem, which is able to guarantee that
the solution i) complete covers all the area ii) without
backtracking in already visited sub-areas iii) guar-
antees the minimum coverage time exploiting all the
available robots iv) and does not need any preparatory
stage (the robots can start their journeys from their
initial positions).

3 Multi-Robot Coverage Path Planning
Formulation

For ease of understanding, it is assumed that the
terrain to be covered is constrained within a rect-
angle1 in the (x, y)-coordinates and it is dis-
cretized into finite set of equal cells, the number
of which represent both the level of required spa-
tial resolution and the sensing capabilities of the
robots.

U = {x, y : x ∈ [1, rows], y ∈ [1, cols]} (1)

where rows, cols are the number of rows and columns
after the discretization of the terrain to be covered.
Apparently, the number of all the terrain’s cells is
given by n = rows × cols.

It is also assumed that there are no obstacles placed
in a-priori known positions of U . The set of unknown
obstacles is represented as:

B = {(x, y) ∈ U : (x, y) is occupied} (2)

Robots cannot traverse obstacles, thus the overall set
of cells that need to be covered is reduced to:

L = U \ B (3)

1However, the problem formulation along with the proposed
algorithm could be straightforwardly applied to different area
shapes, not necessarily convex

and the number of cells to be covered is reduced to
l = n − no

Definition 1 Two cells (xi, yi) and
(
xj , yj

)
are con-

sidered adjacent if:

‖xi − xj‖ + ‖yi − yj‖ ≤ 1 (4)

As typical in many multi-robot coverage
approaches, it is assumed that the robot can
perfectly localize itself inside U and at each time-
stamp, it can travel from its current cell to any
unblocked (∈ L) adjacent cell, without any motion
uncertainty.

Definition 2 As valid robot path of length m is con-
sidered every sequence of cells

X = ((x1, y1) , . . . , (xm, ym))

where the following constraints are hold

– (xi, yi) ∈ L, ∀ i ∈ {1, . . . , m}
– every two sequential cells, i.e.

(xi, yi) and (xi+1, yi+1), are adjacent
(Definition 1), ∀i ∈ {1, . . . , m − 1}.

Moreover, a closed path of length m is a path, as
defined in Definition 2, where the additional condition
is hold

– (x1, y1) and (xm, ym) are adjacent

The robot positions are defined as:

χi(t) = (xi, yi) ∈ L, ∀i ∈ {1, . . . , nr} (5)

where t denotes the specific time-stamp of the cov-
erage path and nr denotes the number of operational
robots. The (given) initial position of the ith robot
inside L is represented as χi(t0).

Having the above formulation in mind, the mCPP
problem2 can be transformed to calculate the robots’
paths X∗

i ∀i ∈ {1, . . . , nr} so as,

minimize
X

maxi∈{1,...,nr } |Xi |
subject to X1 ∪ X2 ∪ · · · ∪ Xnr ⊇ L

(6)

where |Xi | denotes the length of the path Xi .

2The aforementioned formulation may include cases, where
the optimal solution does not exist and therefore are neglected
for the analysis. The interest reader is kindly referred to the
Appendix A.
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4 Single Robot Coverage Inside Unstructured
Environment

Disregarding for the moment the problem of optimal
movement for a team of robots, let us consider the
problem of covering a continuous unstructured area,
utilizing only a single robot. Following the notation
of optimization problem in Eq. 6, the aforementioned
single robot CPP can be defined as:

minimize
X1

|X1|
subject to X1 ⊇ L

(7)

It has been proved in the literature that the CPP
problem has an O(n) algorithm [18], where n is the
size of grid, that is able to produce always the optimal
solution. In other words, the Spanning Tree Coverage
(STC) algorithm is able to construct the minimum path
that coverages all the operation area L, starting from
any arbitrary unoccupied cell.

Figure 1 illustrates the basic steps of an example
designing trajectory. In this approach, the ter-
rain’s cells are grouped into large square-shaped
cells, each of which is either entirely blocked or
entirely unblocked, and contains four of the initially

discretized cells (Fig. 1b). More precisely, the
obstructed areas cannot be smaller than 4 times
the size of grid’s cell and this condition consists of the
only algorithm’s requirement. As next step, every
unobstructed large cell is translated into a node (Fig. 1b)
and for every adjacent cell, an edge is introduced. For
the resulting graph, a minimal spanning tree is con-
structed, using any minimum-spanning-tree algorithm,
such as Kruskal’s or Prim’s algorithms [33], as it is
illustrated in Fig. 1c. The robot then circumnavigates
the spanning-tree along a (counter) clockwise direc-
tion (Fig. 1d). The circumnavigation of the spanning
tree generates a simple closed path X∗

1 , producing an
optimal -in terms of coverage time- solution.

5 Reduce the Original mCPP Problem

Utilizing the findings of STC algorithm for the case of
one robot, the original mCPP problem, as defined in
Eq. 6, can be reduced to

minimize
L

maxi∈{1,...,nr } |Li |
subject to L1 ∪ L2 ∪ · · · ∪ Lnr ⊇ L

(8)

Fig. 1 Spanning tree
coverage algorithm, sample
execution

(a) Initial cells’ discretiza-
tion, robot’s cell and obsta-
cles

(b) Subdivide the terrain
into large square cells of 4
cells and represent them as
nodes

(c) Construct a Minimum
Spanning Tree for all the
unblocked nodes

(d) Apply the ST to the orig-
inal terrain and circumnavi-
gate the robot around it
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where L1, L2, . . . , Lnr denote the robot sets (and not
strict paths). As next step, nr instances of the STC
algorithm could be employed -in a completely dis-
tributed manner- in order to calculate the robots’ exact
paths inside these sets (problem (7)). Therefore, the
exploitation of STC algorithm allows the removal of
the severe adjacency constraint (Definition 2) regard-
ing the produced robot sets. In other words, only the
problem of building the Li sets, without any concern
about the actual robot’s movement, inside the L world
has to be addressed.

In the rest of this section we investigate the funda-
mental conditions, that have to be hold regrading the
Li sets, so as the optimal solution to the overall mCPP
(6) problem to be guaranteed.

Definition 3 A selection
{
L1, L2, . . . , Lnr

}
com-

poses an optimal solution for the mCPP, iff

1. Li ∩ Lj = ∅, ∀i, j ∈ 1, . . . , nr , i �= j

2. L1 ∪ L2 ∪ · · · ∪ Lnr = L
3. |L1| ≈ |L2| · · · ≈ ∣∣Lnr

∣∣
4. Li is connected ∀i ∈ 1, . . . , nr

5. χi(t0) ∈ Li

The first condition secures that every cell must be
contained strictly in one robot’s set, constituting the
non-backtracking guarantee for the produced solution.
The second condition states that the union of all Li

sets must contain every unblocked cell of the area
to be covered (3) and depicts the fundamental cov-
erage objective of completeness. The third condition
establishes the fully exploitation of the multi-robot
dynamics, by making certain that the number of cells
|Li | in each robot’s set are more or less the same.3

The forth condition declares that the cells inside each
robot’s set Li should be compact, forming a solid
sub-region. In other words, this condition ensures
that the division is absolutely fair and guarantees
a seamlessness navigation scheme, inside spatially
cohesive areas. According to that statement, no robot
may spend extra/non-inclusive time to travel between
unconnected areas. The final condition refines that the

3This ambiguity is introduced mainly for two reasons. On one
hand, it might be impossible to perfect divide the number of
cells to be covered |L| with the number of robots nr . On the
other hand, even in cases where the perfect division is pos-
sible the initial configuration - placement of both the robots
and obstacles - may raise limitations according to the optimal
solution.

initial position of each robot χi(t0) must be contained
on its own set Li , providing the ultimate layer of effec-
tiveness, ensuring zero preparation time and energy.
Any algorithm that is able to construct the Li sets,
ensuring the Definition’s 3 conditions, can be utilized
(in combination with the STC) to construct optimal
solutions to the original mCPP problm (6).

Regarding to the existence of these solutions, it
has been proved [27] that, a fair partition, which does
not require convex pieces, always exists for any poly-
gon and any number of partitions. The problem which
is formulated here is a variation of the aforemen-
tioned one, with an extra condition, that indicates the
inclusion of any arbitrary point of the polygon inside
each partition. Apparently, the above problem cannot
always have a solution and strongly depends on the
arrangement of the arbitrary points, that need to be
included in the produced fair partitions. The overall
formulation of the problem along with proposed algo-
rithm are referred to cases where at least, one optimal
solution exists.

6 Divide Areas Based on Robots Initial Positions
(DARP)

In this section is described the DARP (Divide Areas
based on Robots Initial Positions) algorithm, a specif-
ically tailored, optimality preserving technique that
divides the terrain into nr robot-exclusive regions. To
start with, DARP algorithm adopts the following cell-
to-robot assignment scheme. For every ith operational
robot an evaluation matrix Ei is maintained. This eval-
uation matrix Ei expresses the level of reachability
(e.g. distance) between the cells of L and the ith
robot’s initial position χi(t0). During each iteration the
assignment matrix A is constructed as follows:

Ax,y = argmin
i∈{1,...,nr }

Ei|x,y, ∀(x, y) ∈ L (9)

Afterwards, each robot’s region Li can be computed
straightforwardly by the assignment matrix A as fol-
lows:

Li = {(x, y) ∈ L : A(x, y) = i} , ∀i ∈ {1, . . . , nr}
(10)

Additionally, the number of assigned cells per robot
can be defined as the cardinality of the Li set

ki = |Li | , ∀i ∈ {1, . . . , nr} (11)
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By adopting the aforementioned cells assignments
policy, regardless of the robots’ evaluation matrices E,
the first, second and fifth conditions of Definition 3
are always satisfied. Concretely, one cell can only be
assigned to one robot (first condition), every cell has
been assigned to some robot’s operation plan (second
condition) and it is assumed that the initial robot posi-
tions are always assigned to the corresponding robot
area (fifth condition). In a nutshell, DARP algorithm
is an iterative process, which appropriately modifies
the robots’ evaluations Ei in a coordinated fashion, in
order to meet the two remaining -and in many cases
conflicting- requirements.

Furthermore, the aforementioned cells’ assignment
policy automatically undertakes an additional task
related to the robots’ trajectories time-scheduling. If
it is allowed for robots to occupy the same cells, then
a fine-grained analysis should take place to prevent
robot-to-robot collisions. This fact could result in a
serious downgrade regarding the quality of the overall
solution, even in case where the sets Li are equal.

6.1 Equally Divide the Space

Initially, the robots evaluation matrices Ei contain
distance only information:

Ei|x,y = d
(
χi(t0), [x, y]τ ) , ∀i ∈ {1, . . . , nr} (12)

where d(·) denotes the chosen distance function (e.g.
Euclidean). Thus, the initial assignment matrix A (9)
should be a classical Voronoi diagram.

The DARP algorithm’s core idea is that each evalu-
ation matrix Ei can be appropriately “corrected” by a
term mi as follows:

Ei = miEi (13)

where mi is a scalar correction factor for the ith robot.
The third condition of Definition 3 is equivalent

with the minimization of the:

J = 1

2

nr∑

r=1

(ki − f )2 (14)

where f denotes the global “fair share”: f = l/nr

(#Unoccupied cells divided by the #robots).
A standard gradient descent method for updating m

mi = mi − η
∂J

∂mi

, η > 0, ∀i ∈ {1, . . . , nr} (15)

can be employed, in an attempt to minimize the value
of the cost function (14). When attempting to apply

(15), two shortcomings arise. At first, ∂J/∂mi can-
not be computed algebraically, as the analytical form
that relates J with mi is not available. On the other
hand, there is no guarantee that J has only one (global)
minimum.

To overcome the above problems, a cyclic
Coordinate Descent (CD) methodology is adopted
[35, Algorithm 1]. Coordinate descent algorithms
solve optimization problems by successively perform-
ing approximate minimization along coordinate direc-
tions or coordinate hyperplanes. The global cost func-
tion is minimized cyclically over each of one of the
coordinates while fixing the remaining ones at their
last updated values. Each such subproblem is a scalar
minimization problem, and thus can typically solved
more easily than the full problem.

To start with, the global minimum of this function
will always be in case where k1 = k2 = · · · = knr =
f . Therefore, the global minimum of Eq. 14 can be
obtained if we solve nr single dimension optimization
problems with the following objective function:

Ji = 1

2
(ki − f )2 (16)

By applying the above transformation, we can
achieve the following:

First and foremost, the above search is performed
in local-minima free space.

Lemma 1 All sub-problems of Eq. 16 are convex to
the corresponding controllable parameter mi .

Proof Let’s assume that the ith robot during the pre-
vious iteration, based on its evaluation matrix Ei ,
occupied less cells than the desirable threshold (<
f ). It is obvious from Eqs. 13 and 9 that a “small”
decrease in the corresponding correction factor, mi

(< 1), will lead to an increase in the number of
assigned cells ki , assuming that the other robots’
evaluation matrices E remain the same. Therefore,
the corresponding objective function Ji (16) will be
decreased. Although, if we “over-decrease” the mi

factor “many” cells will be assigned to the ith robot.
Now, the Ji will start to rise again, as the ki will be
greater that the f . From this point and after, if we con-
tinue to decrease mi , the ith robot will be assigned to
more and more cells, as ki can only be increased in
response to mi decrease. The value of Ji is saturated
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when all the available cells4 (l − nr + 1) have been
assigned to the ith cell, and further decreases of mi

cannot affect neither ki nor Ji . Hence, Ji will mono-
tonically be increased, as mi is decreased until the

maximum possible Ji |ki=l−nr+1 = 1
2

(
(l−nr )(nr−1)

nr

)2
.

Therefore, the previously encountered minimum is the
global one. The proof continues to hold if, instead, we
had assumed that the ith robot had been assigned to
more cells than f .

Additionally, the update rule of mi can be straight-
forwardly calculated for each objective function (16)
separately as:

mi = mi − η
∂Ji

∂mi

= mi − η (ki − f )
∂ki

∂mi

(17)

Due to the nature of the problem, the changes in
ki with respect to mi will always be negative (see
proof in Lemma 1) and they are almost identical for
each robot (for a given sub-problem (16)). Addition-
ally, two sets of evaluation matrices

{
E1, . . . , Enr

}

and
{
αE1, . . . , αEnr

}
, where α denotes any posi-

tive constant, correspond to the identical assignment
matrices (9). Therefore, the influence of |∂ki/∂mi | can
be securely omitted and the final update policy can be
approximated as follows:

mi = mi + c (ki − f ) (18)

where c denotes a positive tunable parameter.
Summarizing, using Lemma 1 we can establish

that even thought the global cost function f can
be generally non-convex - depending of the robots
and obstacles formation - with many local minima,
each robot’s contribution Ji is a convex function with
respect to the controllable parameter mi . As shown in
[37], cyclic Coordinate Descent methodologies, where
the above property holds, are able to converge to a
global optimal solution set m∗, i.e.

J (m∗) ≤ J (m), ∀m ∈ dom(J ) (19)

with respect to the initial evaluation matrices Ei (12).

4The available cells are l − nr + 1 as the initial robot cells are
a-priori allocated to the corresponding robot.

6.2 Build Spatial Connected Areas

Although, the aforementioned procedure can be eas-
ily converge to share the available cells L among the
different robots, it cannot guarantee the continuity of
each robot’s sub-region (condition 4, Definition 3).
In oder to deal with such situations, for every ith
robot that occupies more than one distinct regions the
following matrix is introduced

Ci|x,y = min (||[x, y] − r||) − min (||[x, y] − q||) ,

∀r ∈ Ri , q ∈ Qi

(20)

where Ri denotes the connected set of cells where
the ith robot actual lies in (χi(t0)) and Qi denotes the
union of all other connected sets, which have been
assigned to the ith robot but they do not have spatial
connectivity with Ri set. In a more abstract concep-
tualization, the Ci is constructed in a way, to reward
the regions around the ith robot location’s subset,
and to penalize the regions around other unconnected
subsets, constructing gradually a closed-shape region.
If all the assigned cells to ith robot belong to the
same closed-shape region, the Ci is set to be the
all-one-matrix.

The final update in the ith evaluation matrices is
calculated as

Ei = Ci 
 (miEi) (21)

where 
 denotes the element-wise multiplication.
The findings of the previous subsections are illustrated
in Fig. 2, where a flowchart of the proposed algorithm
is presented.

6.3 Performance Discussion

Although simple in concept, the DARP algorithm aims
to provide the optimal cells’ assignment, in cases
where at least one exists. A sample execution is illus-
trated in Fig. 3, where the terrain is constituted of 42×
42 cells and the number of robots is nr = 5. The initial
robots’ positions were squeezed inside a sub-region of
the whole operation area, at the left bottom space of
the grid, with dimension 10×10 cells. Each sub-figure
illustrates the condition of the assignment matrix A (9)
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Fig. 2 DARP algorithm flowchart - divide areas based on robots initial positions

at the corresponding iteration. Apparently, the algo-
rithm was terminated after 260 iterations, fulfilling all
the conditions of Definition 3.5

It is worth highlighting, that contrary to robot’s
evaluation matrix Ei which is continuous, the pro-

5The interested readers are kindly referred to http://tinyurl.com/
DARP-live to watch an additional recorded execution of the
DARP algorithm.

duced sub-areas that are finally assigned to each robot,
may be arbitrary unconnected (at least temporary, e.g.
Fig. 3b) non-convex areas. In fact, this DARP algo-
rithm’s key feature, allows the gradually inclusion to
each robot’s sub-region, of any arbitrary located cell.
More precisely, DARP algorithm is capable of escap-
ing the local minima by temporarily violating the
condition about the connectivity of the each ith robot
assignment matrix. Afterwards, the algorithm grad-
ually eliminates the presence of unconnected areas,

http://tinyurl.com/DARP-live
http://tinyurl.com/DARP-live
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(a) T = 0 (b) T = 40 (c) T = 80

(d) T = 120 (e) T = 200 (f) T = 260

Fig. 3 Progression of the robots sub-regions over iterations

by reinforcing the robot’s evaluation Ei around the
original (the one that the robot actually lies in) sub-
area. By the time, the connectivity inside the exclusive
robot sets Li is restored, the evaluation matrices Ei

will have completely changed their forms, and ideally
towards to the optimal cells assignment.

The proposed algorithm diverges from the general
class of local search algorithms in the sense that, it
changes its current state, mainly based on the global
optimal one and not only by evaluating information
from the current and the candidate states. Over and
above, DARP algorithm approximates the behavior of
a gradient decent algorithm, with an extra capability to
search effectively and reach the global optimal, even
in case with multiple local minima.

6.4 Computational & Memory Complexity Analysis
from an Approximation Point of View

The memory needs of the algorithm can be calcu-
lated straightforwardly, as it utilizes a constant number
β of matrices with dimensions (nr × n). In other
words, the algorithm’s memory complexity is linear
to the size of input (nr × n), i.e. O (β × nr × n). The
main optimization loop performs α × nr × n oper-
ations, where α is a constant number, resulting in

O (α × nr × n)6 computational complexity. However,
the number of times which the main optimization loop
is executed (MaxIter) is not constant or linear, but it
depends on the specific characteristics of the current
problem in a non-linear fashion. As it is not possible to
find the closed form that relates the maximum needed
(main optimization loop) iterations with the number
of robots nr , initial deployments χi(t0) and the grid
size n, the following approximation scheme for the
algorithm’s computational needs is adopted.

A series of simulations were conducted in order
to measure the MaxIter (main optimization loop) iter-
ations that were needed for the construction of the
optimal solution (Definition 3). For each configura-
tion (nr and n) the results were validated by repeating
the experiment with different, randomly chosen, initial
χi(t0), in order to be able to approximate the MaxIter
for the worst case scenario.

Please note that, it is practically infeasible to com-
pute exhaustively, the actual worst case for each con-
figuration, due to the vast number of possible combi-
nations of the initial robots positions. Nonetheless, in

6Please note that, in both complexity calculations, there is
an additive constant which is omitted, due to its negligible
influence
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every different set-up the number of randomly created
instances was proportional to the input parameters (nr

and n). By doing so, it is ensured that the computed
worst case complexity is representative of the number
of possible occurring configurations.

The number of the experiments for each configura-
tion starts form 50 for {nr = 3, n = 500} and reaches
up to 5000 for {nr = 20, n = 5000}, constructing a
pool of more than 120000 different experiments.

In order to present the overall approximation on
the DARP’s complexity (MaxIter × nr × n), for each
{nr, n} scenario was extracted the worse-case (maxi-
mum) of the needed iterations (MaxIter). These worse
cases for each scenario are translated into a surface by
applying a polynomial least squares curve fitting tech-
nique. The produced surface is illustrated with blue
color in Fig. 4, where the operations’ needs growth,
with respect to the input, is representing both in lin-
ear and logarithmic scale. Moreover, and in order to
evaluate the produced complexity results a number
of polynomial surfaces is utilized. More specifically,
with yellow, magenta and green color is illustrated the
complexity curves in cases of f1(nr , n) = n2

r × n2 ,
f2(nr , n) = n3

r ×n2, and f3(nr , n) = n2
r ×n3, respec-

tively. The evidences of this representation indicate
that DARP’s complexity is cubic with respect to the
input of the problem (nr × n), as the approximation

on the complexity curve is strictly bounded under the
n3

r × n2 curve, at least until the maximum simulated
parameters nr = 20 and n = 5000.

Concluding this section, it is worth mentioned that
the proposed algorithm cannot bypass the NP-nature
of the mCPP problem, but it provides an approxi-
mately polynomial algorithm until a specific (practical
interesting) input. If both the size of the robots and
number of the cells grow beyond the aforementioned
order of magnitude of the input, the algorithm may
lose its polynomial behavior.

6.5 Beyond the Classical mCPP

It is worth to point out that, the DARP algorithm is
an optimization based one, which allows the inclu-
sion of other secondary objectives, depending on the
final multi-robot application, such as robot’s subareas
smoothing etc., by just revising the appropriate per-
formances’ criteria. In the literature, the problem of
mCPP is usually defined as in Section 3, where it is
desirable to produce balanced paths, in order to exploit
all the available robots’ capabilities. However, there
might be cases where specific robots’ characteristics
(e.g. sensing module, battery life, etc.) impose dif-
ferent utilization portions among the different robots.
The proposed approach is able to straightforwardly

Fig. 4 Approximation on DARP’s complexity, a comparison with known polynomial surfaces
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encompass this additional information, by appropri-
ately modifying the calculation of Ji (16). More pre-
cisely, the objective function for the ith robot is going
to alternate as

Ji = 1

2
(ki − pi)

2 (22)

where pi is the corresponding portion of the map that
the ith robot has to covered based on its capabilities or
limitations

(∑nr

i=1 pi = 1
)
.

However in order to be in-line with the ordinary
mCPP formulation we limit our simulation evaluation
(Section 8) only to scenarios where an equal cells’
division between the robots is considered desirable.

7 Overview of the Proposed Multi-Robot
Coverage Path Planning Algorithm

This section summarizes the complete algorithm for
mCPP problem (6), by fusing the findings of the
DARP and STC algorithms. The proposed algorithm
is separated into two phases: During the first phase,
the DARP algorithm divides the cells of L set into
nr exclusive areas Li , for each available robot, as
explained in Section 6. The outcome Li of that process
serves as the operational area for each robot separately
(Section 4).

After the applying of DARP algorithm and the cor-
responding production of Li sets, the original multi
robot optimization problem (6) is downgraded to nr

single robots CPP problems, alleviating its explosive
combinatorial complexity. Each one of these problems
can be expressed as:

minimize
Xi

|Xi |
subject to Xi ⊇ Li

(23)

where Xi denotes a robot path as defined in Defini-
tion 2. As shown in Section 4 this class of optimization
problems (single robot inside grid connected environ-

ments) can be solved in an optimum manner (optimal
solution - polynomial time), utilizing the STC Algo-
rithm.

Even though the final path
{
X1, X2, . . . , Xnr

}
con-

struction takes place in a fully distributed manner, the
union of the produced solutions is actually an optimal
solution for the Eq. 6 problem, without any compro-
mise in the quality or the generality of the solution.

In essence, this can be attained by the original con-
struction, during the first phase (Section 6), of the Li

sets, ensuring that the conditions of the Definition 3
are satisfied. The aforementioned feature of the algo-
rithm not only allows the fully parallelization of the
algorithm, but dramatically reduces the complexity of
the initial mCPP problem to the order of magnitude of
the STC algorithm.

Figure 5 depicts an example execution of the pro-
posed algorithm. Figure 5a illustrates the initial robots
positions along with the placements of the fixed
obstacles. The Fig. 5b represents the result from the
area division approach, as described in Fig. 2. Each
sub-area’s Minimum Spanning Tree is represented
in Fig. 5c with spatial information about the nodes
inside the L world. Finally, the proposed algorithm
let the robots move along the path that circumnav-
igates the corresponding spanning tree, as is shown

in Fig. 5d. It is worth noticing that, the produced
paths constitute an optimal solution, as the number
of cells that have been assigned to each robots are
[12 13 12 12 12 13 12 12 12 ] (Definition 3, condi-
tion 3)). The corresponding summation, translated to
the operational world, is 4 (12 ∗ 7 + 13 ∗ 2) = 440,
which is exactly the number of cells to be covered
(Definition 3, condition 2)).

8 Simulation Results

This section presents a comparison study between the

proposed DARP+STC algorithm and two of the state-
of-the-art methods (“MFS” and “Optimized MSTC”
see related work). In order to produce comparable
results, we adopt the same simulation set-up as in [39].

More precisely:

– The size of the terrain is always [rows, cols] =
98×98.

– We considered two kind of terrains: 1) The empty

terrain [empty] and 2) the one, which has the 10 %
of its cells occupied by obstacles [outdoor]. The
obstacles’ arrangement follows a random uniform
distribution.

– The number of robots varies from 2, 8, 14 to 20
robots.

– The robots initial placement can take three
different types, according to their in-between
maximum distance (clustering). More precisely,
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(a) Initial cells discretization, robots cell and obstacles (b) DARP outcome - robots’ exclusive areas

(c) Constructing Minimum Spanning Trees for each one of
the robots sets

(d) Final Paths, designed to circumnavigate the MSTs

Fig. 5 DARP+STC Proposed Approach, sample execution with 24x24 grid size, 9 robots and 100 obstacles

the maximum distance between two robots can be
at most 1) 30 % [30] or, 2) 60 % [60] of the maxi-
mum terrain’s dimension correspondingly, and 3)
without any distance constraint (free selection)
[none].

In order to obtain a fair comparison with MFC
and Optimized MSTC algorithm, we repeated each
scenario 100 times. The results for each combina-
tion of different evaluation scenario and algorithm, are
illustrated in Table 1, where it is reported the maxi-
mum [Max] and minimum [Min] coverage time for all
robots, in terms of paths lengths. Simultaneously, for
each scenario we provide the idealized coverage time
[Ideal Max], which represents the optimal solution to

the problem. In other words, this value is simply cal-

culated by dividing the number of unoccupied cells
with the number of robots (f ). Apparently, the larger
deviations from the ideal coverage time, the bigger
the difference between the robots paths, resulting in
unbalanced, sub-optimal routes. The overall scoring

for each scenario per algorithm, against the ideal cov-
erage time, is depicted in [Ratio] column and reports
the ratio of actual (maximum) traveled path and the
ideal coverage time.

The direct observation is that the performance
of the proposed algorithm DARP+STC seems to be
immune to the number of robots and/or the obsta-
cles and/or the initial clustering of the robots, as it
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Table 1 Cover time (in terms of path length) for DARP+STC, compared with MFC and optimized MSTC

Terrain Robots Clustering Ideal Max DARP+STC MFC Optimized MSTC

Max (Min) Ratio Max (Min) Ratio Max (Min) Ratio

Empty 2 30 4801 4803 (4799) 1.001 4878 (4731) 1.02 5337 (4410) 1.11

2 60 4801 4803 (4799) 1.001 4886 (4720) 1.02 5513 (4241) 1.15

2 none 4801 4803 (4799) 1.001 4888 (4725) 1.02 5602 (4168) 1.17

8 30 1200 1203 (1199) 1.003 1399 (838) 1.17 3817 (45) 3.18

8 60 1200 1203 (1199) 1.003 1415 (904) 1.18 3539 (93) 2.95

8 none 1200 1203 (1199) 1.003 1394 (956) 1.16 3281 (146) 2.73

14 30 685 687 (683) 1.006 841 (431) 1.23 3756 (5) 5.48

14 60 685 687 (683) 1.006 819 (522) 1.20 3461 (16) 5.05

14 none 685 687 (683) 1.006 830 (513) 1.21 3072 (40) 4.48

20 30 479 483 (479) 1.008 615 (307) 1.28 3685 (3) 7.69

20 60 479 483 (479) 1.008 604 (332) 1.26 3439 (9) 7.18

20 none 479 483 (479) 1.008 604 (321) 1.26 2867 (18) 5.99

Outdoor 2 30 4321 4321 (4321) 1 4380 (4269) 1.01 4772 (4031) 1.10

2 60 4321 4321 (4321) 1 4382 (4266) 1.01 4854 (3954) 1.12

2 none 4321 4321 (4321) 1 4377 (4269) 1.01 4923 (3903) 1.14

8 30 1079 1082 (1078) 1.003 1263 (789) 1.17 3561 (26) 3.30

8 60 1079 1082 (1078) 1.003 1278 (790) 1.18 3229 (70) 2.99

8 none 1079 1082 (1078) 1.003 1247 (873) 1.16 3099 (94) 2.87

14 30 616 620 (616) 1.006 746 (450) 1.24 3452 (6) 5.60

14 60 616 620 (616) 1.006 750 (482) 1.22 3228 (20) 5.24

14 none 616 620 (616) 1.006 746 (464) 1.21 2819 (37) 4.58

20 30 431 434 (430) 1.007 572 (280) 1.33 3437 (3) 7.97

20 60 431 434 (430) 1.007 557 (285) 1.29 3140 (9) 7.29

20 none 431 434 (430) 1.007 551 (296) 1.28 2740 (18) 6.36

performs with almost the same ratio over the differ-
ent scenarios. Additionally, all the results are close
to the [Ideal Max], and the maximum difference
between two robots path is at most 4 cells, indepen-
dent of the number of robots or/and the grid size,
i.e.

∥∥|Xi | − ∣∣Xj

∣∣∥∥ ≤ 4, ∀i, j ∈ 1, . . . , nr . The

above effectiveness bound is straightforwardly incom-
ing from the DARP algorithm optimality guarantee.
The DARP algorithm calculates the Li areas, having
at most 1 cell difference among the different ith robots
(see Fig. 2). This maximum discrepancy is translated
into 4 cells after the appliance of STC algorithm

Fig. 6 Cases where the
robots and/or obstacles
arrangement, do not allow
the acquisition of optimal
solution

(a) The robots ini-
tial placement lim-
its some robots op-
eration plans

(b) The obstacles
and robots place-
ment forms two ex-
clusive sub-areas

(c) The obstacles
do not allow the
fully coverage of
the area of interest
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(Section 4). Overall, these findings seal experimen-
tally, the performance of the proposed algorithm.

The afore-mentioned optimal performance does not
come without shortcomings. In all cases, initial con-
figurations that lead to sub-optimal results are dis-
carded from the pool of test cases, while both the
other two algorithms are able to straightforwardly
produce some sub-optimal operation plans. A proper
categorization of the cases where optimal solutions
cannot be obtained, is provided in Appendix A, where
also preliminary solutions, in-line with the proposed
approach, are also presented.

9 Conclusions and Future Work

The proposed approach orchestrates the optimal coor-
dination of a multi-robot team, so as to completely
cover an area of interest. During the preliminary
analysis, the underlying mCPP problem is translated
into a constraint satisfaction problem, by formally
define the exact attributes that have to be hold in
order to achieve the optimal performance. In heart
of the proposed approach lies the DARP methodol-
ogy, a search algorithm, which finds the optimal cells
assignment for each robot utilizing a cyclic coordi-
nate descent approach, which takes into account both
the robots initial positions and the obstacles forma-
tion. The outcome of the DARP algorithm constitutes
a set of exclusive operation areas for each mobile
robot. These well-defined regions, are forwarded to
each robot’s planner, where by employing STC algo-
rithm, the exact route that covers the assigned area
is calculated. The overall navigation scheme achieves
to traverse the complete operation area, without back-
tracking in already visited areas, starting from the
exact initial robot positions. To the best of our knowl-
edge, no other method from the literature exhibits all
the aforementioned features at the same time.

Several avenues of exploration are left open for
future work. One direction could be the relaxing of
one or more constraints of Definition 3. For instance,
in expense of the non-backtracking attribute, the pro-
duced paths can be constructed to be convex only (less
messy) or/and the shape of the STC can be appropri-
ately modified in order of the turns in robots’ paths to
be minimized. In addition, we intend to include in our
methodology another stage, which will be in charge
for the automatic recognition/detection of non-optimal

cases, in order to directly apply the appropriate, pre-
defined solution scheme. Finally, in our future plans is
the development of an online version of DARP algo-
rithm, so as to be able to operate inside completely
unknown terrains.
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Appendix A: Cases Where the Optimal Solution
does not Exist

The problem formulation, as it is defined in Section 3,
it may contain cases where the given placement of
the obstacles or the robots blocks the access to one or
more cells. Although these cases are considered out
of the scope of the paper, and excluded from the con-
sidered scenarios, here in the appendix we categorize
them and propose some preliminary solutions in-line
with the proposed approach.

The first class consists of cases where an optimal
solution to the mCPP problem can not be attained,
due to the initial placements of the robots (Fig. 6a). In
these cases, one could spend some preparatory steps
in order to rearrange the robots, so as to transform
the problem into a solvable scenario (by the pro-
posed approach DARP+STC). This rearrangement is
not trivial and is forming another optimization prob-
lem, where now the objective is to find the minimum
path to travel in order to render the problem tractable.
Alternatively, one could apply a relaxed version of
DARP algorithm by removing its non-backtracking
property (Definition 3, condition 1).

Another case, where the coverage task cannot be
equally separated among the available robots, might
be occurred, where one or more robots are trapped
inside non-avoided, bounded sub-areas (Fig. 6b). In
these cases one could straightforwardly apply the pro-
posed approach, as many times as the number of
bounded zones, and the optimal attainable solutions is
again guaranteed. Apparently, in this case it is highly
unlikely to end up having a balanced path length
across all the robots’ planners. In fact, now the pro-
duced path lengths are highly dependent on the size
of the corresponding bounded area. However, differ-
ent robots that lie in same sub-area should have almost
the same workload (Definition 3, condition 3).
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Moreover, there are non-recoverable cases, where
one or more sub-areas cannot be reached (Fig. 6c).
In such situations the proposed algorithm can be
applied on the remaining terrain, ensuring the optimal
robots’ path construction. Finally, it might be occurred
a combination of the above scenarios and then one
could apply a hybrid version of the aforementioned
solutions.

Over and above, it should be highlighted that, in
all these cases the fact that the proposed approach is
not able to deliver an optimal set of paths, is not some
kind of weakness, but it is due to the fact that the opti-
mal solution, at least with the properties as defined in
Definition 3, does not exist.
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