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Abstract. In Content-Based Image Retrieval (CBIR) sys-
tems, the visual content of the images is mapped into a new
space named the feature space. The features that are chosen
must be discriminative and sufficient for the description of
the objects. The key to attaining a successful retrieval sys-
tem is to choose the right features that represent the images
as unique as possible. A feature is a set of characteristics
of the image, such as color, texture, and shape. In addition,
a feature can be enriched with information about the spa-
tial distribution of the characteristic that it describes. Eval-
uation of the performance of low-level features is usually
done on homogenous benchmarking databases with a lim-
ited number of images. In real-world image retrieval sys-
tems, databases have a much larger scale and may be hetero-
geneous. This paper investigates the behavior of Compact
Composite Descriptors (CCDs) on heterogeneous databases
of a larger scale. Early and late fusion techniques are tested
and their performance in distributed image retrieval is cal-
culated. This study demonstrates that, even if it is not possi-
ble to overcome the semantic gap in image retrieval by fea-
ture similarity, it is still possible to increase the retrieval ef-
fectiveness.

Keywords
CBIR, Compact Composite Descriptors, Early Fusion,
Late Fusion, Distributed Image Retrieval.

1. Introduction
Content-based image retrieval (CBIR) is defined as any

technology that in principle helps to organize digital image
archives by their visual content. By this definition, anything
ranging from an image similarity function to a robust image
annotation engine falls under the purview of CBIR [11]. The
most common form of CBIR is an image search based on
a visual example. The user inputs an image (query image),
and, based on certain low level features, the system brings
up similar images. This sort of features are used for describ-

ing the content of the image and must thus be appropriately
selected on each occasion. These features can be global fea-
tures, which describe information from the entire image, or
local features, which describe segments, regions or patches
of the image. In current research efforts in visual information
retrieval, global features have lost part of their significance
[29]. Despite this, global features are a factor often used in
Content-based image retrieval (CBIR) systems as they are
easy to handle and still provide basic retrieval mechanisms.
Fusion in image retrieval goes hand-in-hand with practical,
viable system development, which is critical for the future
of image retrieval research [11]. Two main approaches to
fusion have been taken: early fusion, where multiple image
descriptors are composed to form a new one before index
time [30], and late fusion, where result lists from individual
descriptors are fused during query time [22][18], as in text
meta-search.

Compact composite descriptors (CCDs) [4], [10], [5],
[6] are global image features, capturing more than one type
of information at the same time in a very compact represen-
tation. Their quality has so far been evaluated in retrieval
from several benchmarking databases, and in the scholarly
literature has been found to be better than other descriptors
such as the MPEG-7 [24], [23] descriptors. The basic dif-
ference between CCDs and other descriptors in the literature
lies in the fact that each of these descriptors is determined for
a different type (in terms of content) of image. The structure
of these descriptors is described in Section 2.

Section 3 describes the process of early fusion for the
2 descriptors of the CCD family, which combine texture and
color information. These two descriptions are intended for
indexing and retrieval of natural color images.

In Section 4, we consider heterogeneous databases and
investigate query-time fusion techniques for CCDs. The re-
sults show that fusion is beneficial even with simple score
normalization and combination methods, due to the compat-
ibility of the score distributions produced by the CCDs con-
sidered.

In Section 5 we investigate the behavior of CCDs in
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a distributed image retrieval setup, where each database is
described by a different CCD. We compare a variety of lin-
ear and non-linear score normalization methods in order to
find the most suitable method for merging results. Experi-
ments show that non-linear methods work better than linear,
although merging without normalization works best due to
the compatibility of the score distributions produced by the
CCDs. Finally, the conclusions are given in Section 6.

2. Compact Composite Descriptors
The family of compact composite descriptors includes

descriptors for 3 types of images. A group of 2 descriptors
combines color and texture information in order to describe
natural color images. One descriptor combines brightness
and texture characteristics in order to describe grayscale im-
ages (primarily radiology medical images), and the other
combines color and spatial distribution characteristics in
order to describe artificially generated images (computer
graphics, color sketches etc.)

2.1 CCDs for Natural Color Images
This category includes 2 descriptors: the Color and

Edge Directivity Descriptor (CEDD) [10] and the Fuzzy
Color and Texture Histogram (FCTH) [4]. The structure
of these descriptors consists of n texture areas. In particu-
lar, each texture area is separated into 24 sub-regions, with
each sub-region describing a color. CEDD and FCTH use
the same color information, as it results from 2 fuzzy sys-
tems that map the colors of the image in a 24-color custom
palette. To extract texture information, CEDD uses a fuzzy
version of the five digital filters proposed by the MPEG-7
EHD [33], forming 6 texture areas. In contrast, FCTH uses
the high frequency bands of the Haar Wavelet Transform in
a fuzzy system, to form 8 texture areas.

An important characteristic of these 2 descriptors is the
small size needed for indexing images. The CEDD length is
54 bytes per image while FCTH length is 72 bytes per image.

2.2 CCD for Grayscale Images
This category includes the Brightness and Texture Di-

rectionality Histogram (BTDH) descriptor. This descriptor
was initially proposed in [5] for use with grayscale radiology
images but is considered suitable for every grayscale image.
This descriptor uses brightness and texture characteristics as
well as the spatial distribution of these characteristics in one
compact 1D vector.

To extract the BTDH descriptor, a two unit fuzzy sys-
tem is used. To extract the brightness information, a fuzzy
unit classifies the brightness values of the image’s pixels into
a preset number of clusters. The cluster centers are cal-
culated using the Gustafson Kessel Fuzzy Classifier [15].

The texture information embodied in the proposed descriptor
comes from a fuzzy approach suggested by the Directional-
ity histogram in [31]. This feature is part of the well known
Tamura texture features. Finally, a Fractal Scanning method
is used to capture the spatial distribution of brightness and
texture information.

2.3 CCD for Artificially Generated Images
The recently proposed Spatial Color Distribution De-

scriptor (SpCD) [6], combines color and spatial color dis-
tribution information. The descriptors of this type can be
used for image retrieval by using hand-drawn sketch queries,
since this descriptor captures the color layout information. In
addition, the descriptors of this structure are considered to
be suitable for colored graphics, since such images contain
a relatively small number of color and less texture regions
than the natural color images.

SpCD uses a fuzzy linking system that maps the col-
ors of the image in a custom 8-color palette. In order to
integrate the spatial information, this descriptor divides the
image into a predetermined number of sub-images and, by
scanning each one, captures the spatial distribution of the
color. Important characteristics of SpCD are its small storage
needs, which do not exceed 48 bytes an image, and its small
size, which does not exceed 48 bins. During data retrieval
from databases, the length of the retrieved information is of
great significance.

3. CEDD and FCTH Early Fusion
The results for the 2 CCDs intended for natural color

images in different benchmarking databases are notable.
Tab. 1 shows the ANMRR [25] results in 3 image databases
in contrast with the MPEG-7 descriptor results. The AN-
MRR is always in a range of 0 to 1, and the smaller the
value of this measure is, the better the matching quality of
the query. ANMRR is the evaluation criterion used in all of
the MPEG-7 color core experiments. Evidence shows that
the ANMRR measure coincides approximately linearly with
the results of subjective evaluation of search engine retrieval
accuracy1.

WANG [32] UCID [28] NISTER [27]
CCD
CEDD 0.25283 0.28234 0.11297
FCTH 0.27369 0.28737 0.09463
MPEG-7
DCD MPHSM 0.39460 - -
DCD QHDM 0.54680 - -
SCD 0.35520 0.46665 0.36365
CLD 0.40000 0.43216 0.2292
CSD 0.32460 - -
EHD 0.50890 0.46061 0.3332
HTD 0.70540 - -

Tab. 1. ANMRR Results on Several Benchmarking Databases.

1More details about the ANMRR are given in Appendix 1.
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The ANMRR values for the MPEG-7 descriptors in
WANG’s [32] database as well as the ground truths that
were used are available at [34]. Since the MPEG-7 de-
scriptor results are not available for UCID [28] and NISTER
[27] database, an implementation of CLD, SCD and EHD
in img(Rummager) [8] and LIRe Demo [21] retrieval sys-
tems is used. Details relating to the experimental results, the
implementation of the MPEG-7 descriptors, as well as the
ground truths that were used, are available in [9].

Observing the results in various queries, it is easy to
ascertain that in some of the queries, better retrieval results
are achieved by using CEDD, and in others by using FCTH.
Could these 2 descriptors be combined to improve the re-
trieval results?

Based on the fact that the color information given by
the 2 descriptors comes from the same fuzzy system, we can
assume that joining the descriptors will rely on the combin-
ing of texture areas carried by each descriptor. Therefore,
uniting CEDD and FCTH will lead to a new descriptor that
will be made up of a combination of CEDD and FCTH tex-
ture areas. The types of texture areas adopted by each de-
scriptor are illustrated in Fig. 1.

Fig. 1. CEDD and FCTH Texture Areas.

The combined descriptor is called Joint Composite De-
scriptor (JCD)[7]. It is made up of 7 texture areas, with
each area made up of 24 sub-regions that correspond to
color areas. The texture areas are as follows: JCD(0) Lin-
ear Area, JCD(1) Horizontal Activation, JCD(2) 45 Degrees
Activation, JCD(3) Vertical Activation, JCD(4) 135 Degrees
Activation, JCD(5) Horizontal and Vertical Activation and
JCD(6) Non Directional Activation.

In order to make the combination process of CEDD and
FCTH clear, we model the problem as follows: Let CEDD
and FCTH be available for one image ( j). The indicator
m ∈ [0,23] symbolises the bin of the color of each descriptor
while n ∈ [0,5] and n′ ∈ [0,7] determine the texture area for
the CEDD and FCTH, respectively. Each descriptor can be
described in the following way: CEDD( j)m

n ,FCTH( j)m
n′ .

For example, the symbol CEDD( j)5
2 corresponds to the

bin(2× 24+ 5 = 53) of the CEDD descriptor of image ( j).
The algorithm for the Joint Composite Descriptor can be an-
alyzed as follows:

JCD( j)i
0 =

FCTH( j)i
0 +FCTH( j)i

4 +CEDD( j)i
0

2
, (1)

JCD( j)i
1 =

FCTH( j)i
1 +FCTH( j)i

5 +CEDD( j)i
2

2
, (2)

JCD( j)i
2 = CEDD( j)i

4 , (3)

JCD( j)i
3 =

FCTH( j)i
2 +FCTH( j)i

6 +CEDD( j)i
3

2
, (4)

JCD( j)i
4 = CEDD( j)i

5 , (5)

JCD( j)i
5 = FCTH( j)i

3 +FCTH( j)i
7 , (6)

JCD( j)i
6 = CEDD( j)i

1 (7)

with i ∈ [0,23].

In order to measure the similarity of the images on the
basis of JCD, the Tanimoto coefficient is used, just as in the
CEDD and FCTH. The distance T of images (a) and (b) is
determined as Tab and is calculated as follows:

Tab = T (JCD(a)m
n ,JCD(b)m

n ) = (8)

=
JCD(a)m

n
T JCD(b)m

n

JCD(a)m
n

T JCD(a)m
n + JCD(b)m

n
T JCD(b)m

n − JCD(a)m
n

T JCD(b)m
n

where JCD(a)m
n

T is the transposed vector of the JCD(a)m
n . In

the absolute congruence of the vectors the Tanimoto coeffi-
cient takes the value 1, while in the maximum deviation the
coefficient tends to zero.

Joint Composite Descriptor has been integrated in the
retrieval software system Img(Rummager).

Experiments were carried out on 3 benchmarking im-
age databases. Initially, experiments were carried out in
Wang’s database of 1000 images [32]. In particular, queries
and ground truths proposed by the MIRROR [34] image
retrieval system are used. MIRROR separates the WANG
database into 20 queries. Experiments were also carried
out in the UCID image database [28]. This database cur-
rently consists of 1338 uncompressed TIFF images. All the
UCID images were subjected to manual relevance assess-
ments against 262 selected images, creating 262 ground truth
image sets for performance evaluation. UCID and WANG
databases are part of the benchmark databases proposed by
[12]. These databases are used for a meaningful comparison
of feature performances.
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Fig. 2. Retrieval Results on query ”‘270”’ (Wang Database)
using (a) CEDD; NMRR = 0.387, (b) FCTH;
NMRR = 0.343 and (c) JCD; NMRR = 0.335.

Finally, experiments were carried out in the Nister [27]
image database. The Nister image database is made up of
10200 images divided into 2550 groups of 4 images. Each
group includes images of a single object. The experiments
took place in the first 1000 images of the database with 250
queries. The objective Averaged Normalized Modified Re-
trieval Rank (ANMRR) is employed to evaluate the perfor-
mance of the image retrieval system that uses the proposed
method in the retrieval procedure.

WANG UCID NISTER
CEDD 0.25283 0.28234 0.11297
FCTH 0.27369 0.28737 0.09463
JCD 0.25606 0.26832 0.085486

Tab. 2. Early Fusion Results (ANMRR).

As Tab. 2 demonstrates, the JCD succeeds in approach-
ing the values of CEDD and FCTH in the Wang database,
whereas in the remaining databases, it presents better results
than in the other two CCD. These experimental results show
that the early fusion method is able to present better results
than CEDD and FCTH.

4. CCDs Late Fusion
The quality of the CCDs has so far been evalu-

ated through retrieval from homogeneous benchmarking
databases, containing images of only the type that each CCD
is intended for. For example, the JCD is tested on Wang,
UCID and NISTER databases which contain natural color
images, the BTDH on the IRMA database consisting of
grayscale medical radiology images, and the SpCD on two
benchmarking databases with artificially generated images.

In this study, we evaluate the retrieval effectiveness of
late fusion techniques which enable the combined use of the
JCD, BTDH, and SpCD, on heterogeneous databases.

We created a heterogeneous database with 20230 im-
ages by joining the following: 9000 grayscale images from
the IRMA 2005 database; 10200 natural color images from
the NISTER database and 1030 artificially generated images
from the Flags database [6]. We used 40 queries: The first 20
natural color image queries from the NISTER database and
the first 20 grayscale queries of the IRMA 2005 database.

Fig. 3. Late Fusion Implementation Process.

Fusion methods consist of a score normalization and
a score combination component. We mainly focus on the
normalization, using each time the combination method
more natural to the normalization at hand, although we in-
vestigated other possibilities in initial experiments not re-
ported here. More details about the combination methods
are available at [13].

Six fusion methods were tested:

• CombSUM: This is a classic method for integrating
results from different ranking lists. The sum of the de-
viation presented in each ranking list is defined as the
deviation of each image. Finally, the images are ranked
on the basis of this sum. In general, this method is de-
scribed as the addition of all scores per image, without
normalization.

• Borda Count + CombSUM: The Borda Count origi-
nates from social theory in voting. The image with the
highest rank on each ranked list gets n votes, where n is
the collection size. Each subsequent rank gets one vote
fewer than the previous. Votes across ranked-lists are
naturally combined with CombSUM.

Let the query be A. The search is performed on
a database according to the JCD. The results are sorted
according to the distance D, which each image presents
from the query A. Each image l, depending on the po-
sition shown in the results, is scored as follows:

Rank′(l) = N−R(l) (9)

where N is the total number of the images in the
database and R(l) is the Rank of the image l after clas-
sification.

The same procedure is followed for the BTDH and
the SpCD descriptors. The results are classified and
each image is scored with Rank(l)′′ and Rank(l)′′′, re-
spectively. Finally, for each l image the Rank(l) =
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Rank(l)′+Rank(l)′′+Rank(l)′′′ is calculated and a fi-
nal classification of the results according to the Rank of
each image is made.

• IRP: The Inverse Rank Position merges ranked lists in
the decreasing order of the inverse of the sum of in-
verses of individual ranks.

The operating principle of the method is as follows:
A search is performed using each of the 3 descriptors.
The IRP Rank of each image is determined as:

IRP(l) =
1

2
∑

D=0

1
RankD(l)

(10)

where RankD(l) is the position where the image was
found when the search was performed with descriptor
d, d ∈ {0,2}. At the end of the process the images are
ranked on the basis of their IRP distance.

• Z-SCORE: A standard method for score normalization
that takes the SD (score distribution) into account is the
Z-SCORE. Scores are normalized, per topic and en-
gine, to the number of standard deviations by which
they are higher (or lower) than the mean score:

Assume that for query A there were 3 ranking lists, one
for each descriptor. For each image l, its Z-Score is
calculated for each of the ranking lists according to the
function:

s′(l) =
s(l)−µ

δ
(11)

where s(l) is the distance which image l presents with
query image A, µ the average value of the distances,
and δ the typical deviation.

With the completion of the process, the s′(l) values of
each image for each ranking list are summed and the
final ranking is done on the basis of these values.

The mean and standard deviation depend on the length
of the ranking. Z-SCORE seems to assume a nor-
mal distribution of scores, where the mean would be
a meaningful “neutral” score. As it is well-known, ac-
tual SDs are highly skewed and clearly violate the as-
sumption underlying the Z-SCORE. Although not very
popular in information retrieval, Z-SCORE was used
with reasonable success in [19]. In the field of image
retrieval, it was used by [14].

• Z-SCORE with Median: In order to compensate for
any skews in the score distributions of the descriptors
we replaced the mean value with the median.

• Aggregate Historical CDF (HIS): HIS is a non-linear
normalization which maps each score to the probabil-
ity of a historical query scoring a collection image be-
low that score. This enables normalization of scores
to probabilities - albeit not of relevance - comparable
across different engines. Nevertheless, it is not clear -

if it is even possible - how using a single distribution
can be applied to thresholding, where for optimizing
most common measures a reference to (or probabilities
of) relevance are needed. Per engine, the proposed nor-
malization is:

s′(l) = F−1(P(S≤ s(l))) (12)

where P(S ≤ s(l)) is the cumulative density function
(CDF) of the probability distribution of all scores ag-
gregated by submitting a number of queries to the en-
gine, and F is the CDF of the score distribution of an
ideal scoring function that matches the ranking by ac-
tual relevance. The F−1 transformation is called stan-
dardization step, it is common across all engines par-
ticipating in a fusion or distributed setup, and is con-
sidered critical to the method for compensating for po-
tential individual system biases.

Further study of this method in [1] demonstrated that
this is a very promising method, albeit unnecessarily
complicated.

The same study proposed the Aggregate Historical
CDF Simplified according to which:

HIS : s′(l)−P(SHIS ≤ s(l)) (13)

where HIS refers to the fact that historical queries are
used for aggregating the SD that the random variable
SHIS follows. HIS normalizes input scores s(l) to
the probability of a historical query scoring at or be-
low s(l). The aggregate historical SD is an average
which can be seen as produced by an ’average’ histori-
cal query. In this respect, HIS normalizes the SD of the
’average’ query to uniform in [0,1]. This is equivalent
to the Cormack model [16], assuming such an ’aver-
age’ query is sensible and exists. It should be noted
that this approach is used for the first time in image
retrieval.

As historical queries we used 50 images drawn ran-
domly from the database. Since HIS returns probabil-
ities, the natural combination would be multiplication;
addition gave inferior results in initial experiments.

We evaluated with two measures: the Average Normal-
ized Modified Retrieval Rank (ANMRR), and the Mean Av-
erage Precision (MAP). Since the goal of fusion is to achieve
better results than those achieved by any of the CCDs in iso-
lation, we used the performance of SpCD as a baseline, as
shown in Tab. 3.

All fusion methods beat the baseline. Best effective-
ness overall is achieved by Z-score which beats the base-
lines of the individual CCDs by wide margins. Both versions
(with the mean or median) perform similarly. While HIS
performs better than IRP and close to BC, it lags behind Z-
score and the bare CombSUM. We tried using more than 50
historical queries (up to 1000) in order to deduce smoother



730 S. A. CHATZICHRISTOFIS, A. ARAMPATZIS, Y. S. BOUTALIS, INVESTIGATING THE BEHAVIOR OF COMPACT COMPOSITE . . .

normalization functions, but the effectiveness of HIS did not
improve. This is in line with [1], where 50 queries were
deemed sufficient to achieve a performance plateau.

Descriptor ANMRR MAP
JCD 0.3554 0.5899
BTDH 0.4015 0.5555
SpCD 0.3081 0.6311

CombSUM 0.2491 0.7121
BC + CombSUM 0.2678 0.6848
Z-score with Mean + CombSUM 0.2400 0.7194
Z-score with Median + CombSUM 0.2420 0.7193
IRP 0.2729 0.6674
HIS + multiplication 0.2664 0.6846

Tab. 3. Late Fusion Results.

The performance of the bare CombSUM is remarkable.
Although it is considered a naive method [2], it is found to
be effective and robust. On further investigation it transpired
that the reason for this is the similarity of the SDs, in both
shape and range, across the CCDs (Fig. 4).

Fig. 4. SDs of the three CCDs for 2 queries.

5. Distributed Image Retrieval
With the growing popularity of digital databases, the

focus of research in the area of CBIR has shifted toward
content query from distributed databases. A peer-clustering
model for the query is proposed in [26], with the assumption
that the image collection at each peer node falls under one
category. In [20], a novel approach is introduced studying
practical scenarios where multiple image categories exist in
each individual database in a distributed storage network. In
[17], the behavior of a CBIR engine in an interactive dis-
tributed environment is examined. In the latter approach, the
query image is sent to all registered databases in the net-
work. The response of each database is then collected and
transferred to a local server where a supervised relevance
identification approach is applied to identify the final out-
come of the search. The issue of fusing results returned by
different image repositories is also examined in [3].

In this section, we assume databases with disjointed
content, and simply merge results by first normalizing the
scores assigned to retrieved images by the individual li-
braries. The libraries in the current setup are described by
a variety of single compact composite descriptors. The query
is forwarded to all libraries, without any resource selection.
Each library extracts from the query its own descriptor and
executes the search. In [2] is postulated that effective nor-
malization methods should be non-linear taking into account
the shape of score distributions (SDs) especially for non-text
descriptors where a wider variety of SDs is assumed. In
this respect, we adapt and employ two non-linear methods.
We compare against linear functions, as well as the simple
ranked-based merging with round-robin.

In the previous section, for fusing result-lists obtained
for individual CCDs from a heterogeneous database, we
found that simple score normalization and combination
methods, such as combining by adding bare or linearly nor-
malized scores with Z-score, work best. This was due to
the similarity of the SDs, in both shape and range, across
the CCDs, resulting in compatible scores. This implies that
merging without normalization may be a good baseline.

In order to overcome the baseline, we initially at-
tempted the classic round-robin method. Round-robin
merges results by simply sorting ranks produced by individ-
ual descriptors, ignoring scores.

We also tried the Min/Max method. Min/Max normal-
ization maps the resulting score range linearly to the [0,1]
interval. Its two obvious drawbacks are: outlier scores have
a large impact, and it creates a round-robin effect at the
merged ranking due to the top normalized score in all en-
gines being 1.

We then attempted to merge the results with the Z-
SCORE and Z-SCORE with Median methods.

For non-linear normalization we attempted the HIS
method, analyzed in Section 4. Having no historical queries
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available, we used 50 images drawn randomly from the
union of databases (HIS-rfu). We also tried the alternative
method of using 50 random images drawn for each database
from its content (HIS-rfe).

Fig. 5. Distributed Image Retrieval Implementation Process.

We created a distributed image retrieval testbed consist-
ing of 6 databases with disjointed content of the same type:
9000 grayscale images from the IRMA 2005 database in-
dexed with the BTDH are randomly partitioned to 2 libraries;
10200 natural color images from the Nister indexed with the
JCD partitioned to 2 libraries; 1030 artificially generated im-
ages from the Flags database [24] indexed with the SpCD
partitioned to 2 libraries. We used 40 queries: the first 20
natural color image queries from the NISTER database and
the first 20 grayscale queries of the IRMA 2005 database.

Normal. Method
40 Queries

ANMRR MAP P@1 P@5
No-Normaliz. 0.3812 0.5520 0.6750 0.5150
Round Robin 0.6464 0.2126 0.1750 0.2350
MinMax 0.6450 0.2794 0.1750 0.2800
Z-Score Mean 0.4200 0.4408 0.3500 0.2800
Z-Score Median 0.4230 0.4382 0.3500 0.2800
HISrfu 0.4475 0.5068 0.6250 0.5400
HISrpe 0.4161 0.5170 0.6750 0.4900

Tab. 4. Distributed Image Retrieval Results.

We evaluated using four measures: the Average Nor-
malized Modified Retrieval Rank (ANMRR), the Mean Av-
erage Precision (MAP), and the Precision at 1 and 5.

Tab. 4 summarizes the merging results. The effective-
ness of round-robin depends on the order of the engines.
To deal with this arbitrariness, we repeated the experiment
6 times with random engine orderings, and presented the av-
erage effectiveness; round-robin is clearly the worst method.

We removed the engine ordering arbitrariness simi-
larly for the top result per engine also for Min/Max, which
performs slightly better than round-robin. Z-score is the
best performer of both linear methods and much better than
round-robin.

There is a clear advantage of the non-linear HIS meth-
ods over the linear ones, although they lag slightly behind in
the bare score merging. Using compatible descriptors from
the family of CCDs and merging with bare non-normalized
scores works best.

6. Conclusions
This paper presented 3 experiments. We initially at-

tempted a technique combining CEDD and FCTH into
a fused descriptor, the Joint Composite Descriptor (JCD).
This descriptor was tested on various image benchmarking
databases and had better results than the descriptors which
formed it. We then tried techniques for fusing retrieval re-
sults obtained from a heterogeneous image database using
multiple CCDs individually. This type of fusion, known as
late fusion, is found to be a viable method for retrieving from
heterogeneous databases, which improves effectiveness over
single descriptor baselines even with simple score normal-
ization and combination methods.

While [29] postulates that effective normalization
methods should be non-linear taking into account the shape
of SDs especially for non-text descriptors where a wilder va-
riety of SDs is assumed we found these claims to be not nec-
essarily true. Using compatible descriptors from the family
of CCDs, combined with adding bare or linearly normalized
scores with Z-score works best.

Finally, the use of CCDs in distributed image retrieval
was attempted. In observing the results, we found that non-
linear normalizations are better than linear. By using com-
patible descriptors from the family of CCDs, merging by
bare non-normalized scores works best.
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1. ANMRR Calculation
The average rank AVR(q) for query q is:

AVR(q) =
NG(q)

∑
k=1

Rank(k)
NG(q)

(14)

where

• NG(q) is the number of ground truth images for query
q. A ground truth is defined as a set of visually similar
images.

• K = min(XNG×NG(q),2×GTM).

• GTM = max(NG).

• If NG(q)> 50 then XNG = 2 else XNG = 4.

• Rank(k) is the retrieval rank of the ground truth image.
Consider a query. Assume that as a result of the re-
trieval, the kth ground truth image for this query q is
found at a position R. If this image is in the first K
retrievals then Rank(k) = R else Rank(k) = (K +1).
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The modified retrieval rank is:

MRR(q) = AVR(q)−0.5× [1+NG(q)]. (15)

Note that MRR is 0 in case of perfect retrieval. The normal-
ized modified retrieval rank is computed as follows:

NMRR(q) =
MRR(q)

1.25×K−0.5× [1+NG(q)]
. (16)

Finally the average of NMRR over all queries is defined as:

ANMRR =
1
Q

Q

∑
q=1

NMRR(q) (17)

where

• Q is the total number of queries.
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