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Abstract Low level features play a significant role in image retrieval. Image moments
can effectively represent global information of image content while being invariant under
translation, rotation, and scaling. This paper presents CoMo: a moment based composite
and compact low-level descriptor that can be used effectively for image retrieval and robot
vision tasks. The proposed descriptor is evaluated by employing the Bag-of-Visual-Words
representation over various well-known benchmarking image databases. The findings from
the experimental evaluation provide strong evidence of high and competitive retrieval
performance against various state-of-the-art local descriptors.

Keywords Content based image retrieval · Low level features ·
Compact composite descriptors

1 Introduction

Content Based Image Retrieval (CBIR) is a long-standing problem especially in the area of
computer and robot vision. In the past decade, visual search has attracted a great deal of
attention, even though it has been studied since the early 1990s [33]. Despite the fact that
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for most evaluation benchmarks, the state of the art is currently held by conventional low-
level based approaches [27, 34, 55, 57, 58], recent research on CBIR is heavily focused on
Deep Learning techniques with Convolutional Neural Networks (CNN) [13]. However, such
techniques assume the existence of a significant amount data for training computations, and
for generating accurate results. Before a learning machine can perform classification and
recognition, it needs to be trained first, and training samples need to be accurately labeled.
The labeling process can be both time consuming and error-prone [45]. Notwithstanding
the significant improvements introduced by such techniques, in some domains large scale
repositories of images are not always accessible. Examples of such domains include: com-
mercial image search engines; where images are not transferred unless payment is done,
classification of explicit material; where transmission of the data defeats the purpose of a
filter, or large scale investigations of criminal material; for instance, cases involving child
abuse. These scenarios indicate examples where training data are not always sufficient or
easily accessible, especially in controlled environments; where access to sensitive image
data is not permited. In such domains, information from extracted features or image sig-
natures should not allow for images to be reconstucted. Such features, which are typically
hand-crafted, are employed for classification and retrieval on these datasets. Deselaers et
al. [43]. The goal of any feature-based CBIR method is to vectorize an image so that its
unique characteristics and content are captured. Thus, and to make a first rough categoriza-
tion, existing CBIR approaches can be classified according to the image features considered
or deemed meaningful. It has been a long subject of debate the concenrn regarding the most
effective way to treat an image for indexing and retrieval [9, 54].

Several approaches for tratitional content based image retrieval have been proposed in
the literature, ranging from global to local features. Global features, such as, color, texture,
and shape are calculated to form a feature vector representation of an entire image. Such an
approach has low computational cost due to the single-feature vector and is very effective
for certain retrieval tasks. However, there are cases where global feature vectors fail to
discriminate the visual content of an image, providing a rather generalized outline of visual
information. The main advantages of extracting global features is the low cost of the single-
feature space computations, and the fact that indexing one image is independent of the type
or the total number of images in the collection. However, annotating an image solely by a
global feature vector often leads to a rather generalized outline of its visual information.
Global vectors fail to discriminate between the constituent parts of an image since their
scope is built on the assumption that all parts of the image are equally important for the
final representation. Therefore, retrieved results to a given query manage to capture visual
similarity but lack in extracting semantic similarity. Spatial correlation of color [15, 25, 32],
edge or shape occurrences [12, 23] have been explored in an effort to somewhat provide a
more focused description.

With retrieval scenarios becoming more demanding, techniques that take into consid-
eration Local features were introduced. Such techniques, use local features to represent
images obtained from salient regions of the image. Any pixel can define a local feature
without, necessarily, introducing any significant support to the retrieval task or improving
the descriptor’s discrimination ability. For such reasons, salient regions, a.k.a Points-Of-
Interests (POI), that contain rich local information are used. Examples of popular POI
detectors are corner detectors, such as, Shi-Tomasi, Harris, and Fast [14, 48, 53], and blob
detectors e.g., SIFT [29], SURF [2]. Techniques that are based on salient regions face sig-
nificant computational costs due to the high-dimensional local feature space and therefore
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a complexity is introduced. In different domain applications, such as, Visual Simultane-
ous Localization and Mapping, panorama construction, object tracking etc. these extracted
POIs are used directly to recognize one-to-one matches between depictions. In CBIR, how-
ever, direct usage of salient regions is impractical even with today’s available computational
resources.

To overcome the high dimensionality issue, research in the filed of CBMI introduced the
Bag-of-Visual-Words (BOVW) model. This model was inspired by the Bag-of-Words model
used in text retrieval, were each document is represented by a set of distinct keywords.
The difference is that the BOVW model considers Visual Words (VW) i.e., the result of a
clustering algorithm over all detected local features in an image collection. The total number
of VW, namely the centroid of each cluster, forms a resulting VW dictionary (known as the
codebook). Having derived the VW dictionary each image is then represented as a histogram
of the VW, according to the presence or count of each VW in the dictionary. This approach,
solves the high dimensionality challenge, however, from the other hand it introduces the
necessity to predict an appropriate codebook size, and a preferred weighting strategy [7].

This type of quantization, however, comes with a loss of the discriminative ability of
the features. Therefore, several alternatives have been proposed to solve this issue. The
Fisher vector [42] makes use of the Gaussian mixture model by calculating the probability
of a feature falling into the Gaussian mixture in order to train the codebook and quantize
the features. Alternatively, the soft quantization and soft assignment techniques proposed
in [44] and [19], respectively, reduce the quantization error of the original BOVW model,
with a cost in terms of memory overload, and higher searching time. Different methods
like Hamming embedding [18] provide additional information to filter false positives by
generating binary signatures coupling visual words.

Motivation Among the most commonly used features for image retrieval are the Image
Moments, which can assist in identifying certain key characteristics of images. Their
significance, in the fields of image analysis and object representation, is based on the fact that
image moments represent global information of image content while being invariant under
translation, rotation, and scaling. In the recent years, several methods have been proposed
to utilize the advantages of image moment invariants to shape global features [39]. On the
other hand, the opportunity of shaping local moment-based descriptors has not been inves-
tigated in depth [22]. A Moments’ Based local feature would be suitable not only for image
retrieval tasks but also for other rigorous applications, such as Simultaneous Localization
And Mapping or semantic mapping. This paper describes a novel Moment-Based local and
global descriptor, called CoMo, originally introduced in [58]. More specifically, the pro-
posed feature is defined by combining the color information from the color unit of the Color
and Edge Directivity Descriptor (CEDD) [5] with the Seven Invariant Moments (SIM), pre-
sented by Hu, as the new texture unit. This solution provides a better description that at the
same time improves image retrieval due to the independence on rotation and scale variations.

Summary of contributions This paper complements previous work in [58] by contribut-
ing the following:

i. a novel low-level feature that utilizes moment invariants along with the CEDD color
unit, which is both light-weight and efficient to be used for image retrieval and robot
vision tasks;
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ii. an experimental evaluation by observing the behavior of the proposed feature over four
databases against state-of-the-art local and global features from the literature.

The remainder of this paper is structured as follows. Section 2 presents more details
regarding the seven invariant moments as presented by Hu. The process of shaping the
descriptor by associating color information with the Hu Moments extraction process is dis-
cussed in Section 3 whereas Section 4 describes how CoMo can be extracted either as a
local or a global descriptor. Section 5 presents a thorough experimental evaluation of the
descriptor complemented by a discussion of results. Finally, Section 6 concludes.

2 HU moments

Moment invariants originated mainly from a well established area of mathematics called
algebraic invariants. By using the geometrical, central and normalized image moments, Hu
constructed seven moments that are invariant to any translation, scaling and rotation trans-
formation of the image being processed [38]. Hu’s approach was based on the work of the
19th century mathematicians Boole, Cayley and Sylvester [10].

For a given image with pixel intensities f (x, y), geometrical image moments Mpq are
calculated by:

Mpq =
∑

X

∑

Y

xpyqf (x, y) (1)

The centroid coordinates are defined as:

X = M10

M00
and Y = M01

M00
(2)

The central moments μpq are constructed from geometrical moments:

μpq =
∑

x

∑

y

(x − X)p(y − Y)qf (x, y) (3)

The nth central moment is translation-invariant, i.e. for any random variable f and any
constant e:

μn(f + e) = μn(f ) (4)

Furthermore, invariants ηpq with respect to both translation and scale can be constructed
from central moments:

ηpq = μpq

(μ20 + μ02)γ
(5)

where γ = (p + q + 2)/4.
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The seven invariant moments (SIM) are given as follows:

φ1 = η20 + η02

φ2 = (η20 − η02)
2 + 4η2

11

φ3 = (η30 − 3η12)
2 + (η03 − 3η21)

2

φ4 = (η30 + η12)
2 + (η03 + η21)

2

φ5 = (3η30 − 3η12)(η30 + η12)[(η30 + η12)
2

−3(η21 + η03)
2] + (3η21 − η03)(η21 + η03)

×[3(η30 + η12)
2 − (η21 + η03)

2]
φ6 = (η20 − η02)[(η30 + η12)

2 − (η21 + η03)
2]

+4η11(η30 + η12)(η21 + η03)

φ7 = (3η21 − η03)(η30 + η12)[(η30 + η12)
2

−3(η21 + η03)
2] + (3η12 − η30)(η21 + η03

×[3(η30 + η12)
2 − (η21 + η30)

2] (6)

Moment based invariants, in various forms, have been widely used over the years as
features for recognition in many areas of image analysis.

3 Shaping the descriptor

The MPEG-7 like global descriptor CEDD utilizes both color and texture information to
describe the content of an image and has been widely used in recent literature due to
its successful trade-off between effectiveness and efficiency. CEDD is computationally
lightweight relative to other feature extraction mechanisms, but has comparable accu-
racy. Even though CEDD was initially designed so as to globally describe the visual
information of an input image, its scalability on characterizing single feature points has
already been proven. As shown in [16], the localized equivalent of CEDD outperforms
the matching accuracy of many other descriptors, like SIFT [29], SURF [2], ORB [49]
and BRISK [26]. The effectiveness of CEDD relies on its ability to combine color and
texture information. CEDD is a scale-invariant descriptor and can tolerate small local rota-
tions, but it is not rotation invariant and does not allow for large global rotations and
translations.

Similarly to the structure of CEDD, the proposed descriptor is constructed by integrating
color information from the Color Unit thought a two-staged fuzzy-linking scheme along
with texture information associated with the Hu Moments extraction process from the Tex-
ture Unit. More specifically, texture information is captured by introducing 6 regions, one
for each type of texture (see Fig. 8). The number of regions comes as a compromise between
the low storage requirements of the application using the proposed descriptor, and the need
for more effective retrieval accuracy. Each Texture unit region contains 24 individual regions
defined by the Color unit. Overall, the proposed descriptor contains 6 × 24 = 144 regions.
Figure 1 illustrates the form of the CoMo descriptor. On the completion of the process,
CoMo’s histogram is normalized within the interval [0,1] and then quantized into three bits/
bins.
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Fig. 1 The CoMo descriptor

3.1 Texture information

To incorporate the texture information, CoMo proposes a novel 6-bin histogram, taking into
account the aforementioned set of SIM (φ1, φ2, . . . , φ7). In order to shape the 6 predefined
texture regions, we employed 100000 randomly selected images from FlickR. Next, random
patches of various sizes from all images were extracted. After calculating the Hu moments
from these patches, using a k-means classifier, 6 classes are shaped (see Algorithm 1). It is
worth noting that a 7-dimensional vector describes the center of each class. The set of the
6 × 7 resulted values are hereafter denoted by C.

Algorithm 1 Calculate the First Set of Chromosomes.

1: for Number of Random Images do
2: Generate Random Number of Patches

3: for Number of Patches do
4: += Calculate the 7 Hu Moments from

5: end for
6: end for

//Array contains 7-dimensional vectors

7: Using -Means Classify into 6 classes (array )

In the sequel, a simple genetic algorithm determines off-line the 6 predefined texture
regions to be utilized by the proposed descriptor. The genetic algorithm begins with an initial
population of 20 chromosomes, where each chromosome consists of (7 Hu moments × 6
classes) values. The first chromosome is generated from the set of the 6 classes (array
C) as resulted by the k-means classifier, 9 more chromosomes are generated by slightly
mutating the first one, and the remaining 10 chromosomes are generated randomly. The
chromosomes are in a non-binary form and their initial generation procedure is illustrated
in Fig. 2.

For experimental purposes (refer to Section 5 for more details) the UCID database is
used along with a setup of a simple image retrieval framework. A 6-dimensional vector is
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Fig. 2 Shaping the population of the 20 chromosomes

calculated for each image, by considering the values of its Hu moments. This procedure
aims to map the texture of a given image into a compact histogram. In order to shape a
texture histogram for an input image, the input image is segmented into 64 non-overlapped
image blocks. For each image block, the Hu moments are extracted and their distance with
the 6 given centers is calculated. Based on the distance with each one of the given centers,
the texture histogram is generated. Next, since both, query images and ground truths are
known, an image retrieval process is executed and the Mean Average Precision (MAP) is
calculated (kindly refer to Section 5 for more details about MAP).

Algorithm 2 Tune the Texture Regions.

1: is a set of 7-dimensional vectors

2: for 20 do
3: for Number of Images in UCID do
4: Segment the 64 image blocks

5: for 64 do
6: = Calculate the 7 Hu Moments from block

7: MinVal=double.MIN

8: for 6 do
9: if MinVal then
10: MinVal

11: Min

12: end if
13: end for
14: Histo[ ,Min]++;

15: end for
16: end for
17: Perform Retrieval and Calculate the MAP[ ]

18: end for
19: Sort Chromosomes based on MAP

The procedure is repeated for the set of 20 chromosomes. As a next step the chromo-
somes are sorted based on the resulted MAP, and the best 10 are kept for the formation of the
next generation. A crossover function is applied to the next 3 best chromosomes while the
next best 3 chromosomes are mutated by increasing or decreasing only one contributor value
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of the chromosome. Finally, 4 additional chromosomes are randomly inserted. The proce-
dure is repeated until the fitness function is minimized and there is no further improvement.
The best chromosome is then used to form the 6 texture areas that the proposed descriptor
uses. The entire process is also discussed in Algorithm 2.

3.2 Color information

Moment-based image representation methods extract color information at each color chan-
nel independently [28]. In general there exist dependencies caused by linear transform in
the color space. In contrary, CoMo shares the same color information extraction unit with
CEDD through a two-staged fuzzy-linking scheme.

An effective way to extract color information as feature from an image is by linking the
color space channels. Linking is defined as the combination of more than one histograms to
a single one. One example is the Scalable Color Descriptor (SCD) demonstrated in MPEG-
7 [32]. In the SCD implementation, the HSV color histograms are uniformly quantized into
a a single histogram of 256 bins. This new histogram is defined by sixteen levels in H (Hue),
four levels in S (Saturation) and four levels in V (Value). The values of H, S and V are
computed for every pixel, and then are linearly quantized in the ranges [0, 15], [0, 3] and [0,
3] respectively. At the next step, the function: HQuantized +16×SQuantized +64×VQuantized

is used to form a modified version of the histogram. For the proposed image descriptor, color
information is incorporated by utilizing the linking approach as proposed in [5]. According
to this method, a fuzzy-linking mechanisms fuses the HSV color histograms of a pixel or a
region into a 24-bins histogram. Figure 3 illustrates a graphical abstract of the Color Unit
used by CoMo.

Fuzzy color histogram At the first stage, the employed fuzzy system generates a fuzzy-
linking histogram based on the three HSV channels of a given pixel or a region of pixels
(hereafter referred as Tiles) as inputs, to form a 10-bin histogram as output. Each bin rep-
resents a preset color: (0) White, (1) Gray, (2) Black, (3) Red, (4) Orange, (5) Yellow, (6)
Green, (7) Cyan, (8) Blue, and (9) Magenta.

Channel H is divided into eight fuzzy areas (Fig. 3 – 1st stage Fuzzy System) defined
as follows: (0) Red to Orange, (1) Orange, (2) Yellow, (3) Green, (4) Cyan, (5) Blue, (6)
Magenta and (7) Magenta to Red. For more details concerning the boundaries and the
shaping of the membership functions we refer the reader to [5].

Fig. 3 Graphical abstract of the color unit
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Channel S is divided into two fuzzy areas (0, 1) and Channel V, is divided into three areas
(0, 1, 2). S values that fall in the first area link to a non-color output, black, grey or white,
depending on the activation happening for channel V (0, 1, and 2 respectively). S values
that fall in the second area link to varying color outputs depending on the activation of H ,
as long as V is not in its first area. If V falls in the first fuzzy area the output in this case is
black, independently from the other input values. For more details regarding the fuzzy rules
used to produce the crisp outputs, the reader is refered to [6].

At the second stage of the fuzzy-linking system, the method produces a 24-bin histogram
as output. Each bin represents a preset color as follows: (0) White, (1) Grey, (2) Black, (3)
Light Red, (4) Red, (5) Dark Red, (6) Light Orange, (7) Orange, (8) Dark Orange, (9) Light
Yellow, (10) Yellow, (11) Dark Yellow, (12) Light Green, (13) Green, (14) Dark Green, (15)
Light Cyan, (16) Cyan, (17) Dark Cyan, (18) Light Blue, (19) Blue, (20) Dark Blue, (21)
Light Magenta, (22) Magenta, and (23) Dark Magenta.

The second stage essentially extends the output produced during the first stag; by assign-
ing three different shades to each original color from the 10-bin pallet. To define the
different shades (Light Color, Color, and Dark Color) a second fuzzy system is employed
that uses the values of S and V as inputs.

Both Channels S and V are divided into two fuzzy regions (Fig. 3 – 2nd stage Fuzzy Sys-
tem). For values of V that fall in the first fuzzy area, and independently of S, the original
color (from the 10-bin histogram) is assigned to the respective Dark Color (in the 24-bins
histogram). The S values from the other hand suggests whether the assignment of the orig-
inal color is assigned to Light Color or remains the same in the final 24-bins palette. Note
that since the first three bins are already shades of Grey (White, Grey, and Black) their val-
ues are transferred directly to the final 24-bins histogram. More details about the color unit
are given in [5].

4 Descriptor’s implementation

The CoMo descriptor can be extracted either as a local or a global feature. When it is adopted
as a global feature, the following procedure is applied on the entire image. Similarly, when
the proposed descriptor is used as a local feature, the given methodology applies only on
the regions of interest.

As already discussed in Section 3 the CoMo descriptor is compined from consid-
ering useful information from both the color and the texture units. More specifically,
and to shape the proposed descriptor the input information is decided that is either the
entire image of a region of interest on the image. Then the input is separated specifi-
cally into 1600 equal size image blocks. Each image block interacts successively with
both, the color and the texture information units. When the descriptor is behaving as a
local feature it utilizes a random patches’ generator to extract the regions of interest from
a given image. In other words, rather than attempt to semantically segment the image,
e.g. into foreground object and background, the viual content is represented by a set of
overlapping (local) regions [8]. An algorothm randomly selects x and y positions in the
images, to mark square regions of pixels. As we elaborate in Section 5, employing a ran-
dom sampling strategy yields results that are directly comparable, and often outperform
some of the most sophisticated and complex methods from recent literature [16]. The
sizes of the regions were decided as follows: the smallest patch size (defined as Refer-
ence Patch, denoted by RP ) was set to 80 × 80 pixels, so as to align with the highest
patch size limitation introduced by the CEDD descriptor. Having set the RP we then
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employ a scaling factor (sf ) to generate larger patches of sizes RP ∗ sf × RP ∗ sf

pixels.
In the Color Unit, the image block is converted to the HSV color space in order to provide

the first stage of the fuzzy-linking system with its input. Then, the second sub-unit of the
system produces a 24-bin histogram per tile (as shown in Fig. 3).

In the Texture Unit, the Hu Moments of each image block are computed as follows.
Briefly, Shannon Entropy is used as a statistical measure of randomness,

H(X) = −
n∑

i=1

P(Xi)logbP (Xi) (7)

where, X is a random variable (i.e., image block), n is the number of pixels, b = 2
in our case, and P(Xi) is the occurrence probability of each pixel. If the result com-
puted by (7) is less than Tth, then the block is not considered in the extraction procedure
because the block is assumed to contain insufficient information, and thus is a texture-less
block.

Subsequently, the Euclidean distance between the calculated Hu Moments and the 6
predefined texture classes is computed. The distance is normalized within the interval [0, 1],
with 0 being the closest to the center of the class. If the resulted value is less than a given
threshold, the image block is classified into that texture type. Thus, an image block can
participate in more than one texture types. The outcome generated by this unit is a 6-bin
histogram. At the final stage, the resulted vectors are combined to form the CoMo histogram
of the input patch.

To assist the reader into grasping the fundamentals behinds the extraction procedure the
following scenario is described. Defining the bin produced by the texture information fuzzy
system as n, [0, 5] and the bin produced by the 24-bin fuzzy-linking system as m, [0, 23],
then each image block is placed in the bin position: n× 24 +m. According to the described
methodology, an image block interacts with the Texture Unit. For the purposed of our exam-
ple scenario, let us assume that an image block is classified into the second texture class
n = 1. Then, in the Color Unit, the same image block is converted to the HSV color space.
The mean values of H, S, and V are calculated and become inputs to the fuzzy system that
produces the fuzzy 10-bin histogram.

In addition, let us assume that the classification resulted in the 4th bin indicates that the
color is red. If this is the case, then the second fuzzy system (24-bin Fuzzy-linking system),
using the mean values of S and V, as well as, the position number of the bin (or bins)
resulting from the previous fuzzy ten-bin unit, calculates the hue of the color, and produces
the fuzzy 24-bin histogram. For completeness at this stage, let us assume that the Color Unit
system classifies this block in the 4th bin that indicates the color as light red m = 3.
The combination of the three fuzzy systems will finally classify the image block in the 27th

bin (1 × 24 + 3). This process is repeated for all image blocks.
To restrict the proposed descriptor’s length, the normalized bin values of the descrip-

tor are non-linearly quantized for binary representation in a three bits/ bin quantization.
As already discussed, to calculate the CoMo quantization table, 100000 randomly selected
images from Flicker were used. First, CoMo vectors are calculated for all images. The com-
bined 100000 × 144 elements constitute inputs to a k-means classifier which separates the
samples volume into eight regions; mapping the bin values from the decimal area [0, 1]
into the integer area [0, 7], which can then be represented by 3 bits. It is worth mentioning
that the size of the proposed descriptor is equal to the size of CEDD. An implementation
flowchart is illustrated in Fig. 4.
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Fig. 4 CoMo: Implementation Flowchart

5 Experimental evaluation

This section describes a comprehensive experimental evaluation of the CoMo descriptor
against various state-of-the-art local and global descriptors from the literature. The results
highlight that the novel texture unit incorporated enables the descriptor to be invariance to
alternations under different viewpoint, rotation, scale and lighting conditions. We demon-
strate that our proposed descriptor, at the worst case scenarios, report performances close to
the ones reported by CEDD, whereas, in the best case scenarios CoMo outperforms all the
comparison descriptors.

The rest of this section proceeds by describing the various datasets and our experimental
methodology, followed by a thorough discussion on the experimental results.

Datasets For the evaluation of the retrieval performance of the proposed CoMo descriptor,
experiments were conducted on four different benchmarking datasets: UCID [51], UkBench
[36], Holidays [18], and ZuBuD [52]. Table 1 summarizes the main attributes of the datasets
along with the query mode employed for experimentation purposes.

Our initial experimentation was conducted on the UCID database. This database consists
of 1338 images on a variety of topics, including natural scenes, and man-made objects,
both indoors and outdoors. Manual relevance assessments among all database images are
made available by the benchmark. UCID includes several query images where the ground
truth consists of images whose visual concept is similar to the selected image used in the
query, even though co-occurrence of the same objects may not exist. An example image is
shown in Fig. 5e–g. UKBench database, consists of 10,200 images arranged in 2250 groups.
Each group includes 4 images of a single object, captured from different viewpoints and
under varying lighting conditions. An example query image together with its ground truth
is illustrated in Fig. 5a–d.

INRIA Holidays Database [17] consists of 1491 high-resolution images of natural and
man-made scenes. The dataset contains 500 image groups, each representing a distinct scene

Table 1 Databases used for the evaluation with, number of images in the database, number of query images
used, average number of relevant images per query, and how the queries are evaluated

Name # of img # of queries Avg no. of relevant Query mode

img / query

UCID 1338 262 3.45 query-in-groundTruth

UkBench 10200 2550 4 query-in-groundTruth

Holidays 1491 500 2.98 query-in-groundTruth

ZuBuD 1005 115 5 queries & dataset are disjoint
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Fig. 5 Examples of visual queries using: a–d UKBench, e–g UCID database. In both cases, the left-most
image is the query image and the images to the right of it are the expected results (ground truth)

or object. The number of images per category ranges from 2 to 13 images. The ground truth
of a query per group is also made available. The size of the images varies from 480×640 to
2592×3888 pixels. In contrast to the UKBench and ZuBud databases this database includes
several query images where the ground truth contains images with similar visual concept to
the query image, without this implying the co-occurrence of the same objects.

The Zurich Building dataset (ZuBud) contains 1005 images with 201 buildings each in
five views. All images in the collection have a size of 640×480 pixels. There is also a query
dataset containing 115 images for testing the retrieval performance. Query images have a
size of 320 × 240 pixels. The images are taken from random view points, under occlusion
and varying lighting conditions from different seasons, weather, and different cameras. In
addition this database contains severe viewpoint changes [11]. To give a more precise idea
of this database, an example image is shown in Fig. 7.

Experimental setup & metric To evaluate CoMo, all experiments were conducted using
the Bag-of-Visual-Word model (BoVW). This model has shown remarkable performance
mainly because of its retrieval effectiveness over global feature representations on near
duplicate and verbose images, and of course, the significant advantage of the model in terms
of efficiency when compared with the local feature representations. The employed code-
book used for our experimental purposes consists of 2048 visual words. We note that the
codebook size was chosen based on the results of previous investigations as in [16].

To measure the performance of the proposed descriptor, we used Mean Average Precision
(MAP) metric,

Percision = P = Number of relevant images retrieved

Total number of images retrieved
(8)

Recall = R = Number of relevant images retrieved

Total number of relevant images
(9)
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We compute the Average Precision (AP) using,

AP(q) = 1

NR

NR∑

n=1

PQ(Rn), (10)

where, Rn is the recall after the nth relevant image retrieved, and NR the total number of
relevant documents for the query. MAP is then computed by,

MAP = 1

Q

∑

q∈Q

AP(q), (11)

where, Q is the set of queries q. An advantage of the MAP is that it contains both precision
and recall oriented aspects that make it sensitive to the entire ranking.

Experimental results & discussion Table 3, presents the experimental results on the
UCID, UKBench, Holidays and ZuBud collections. The WS field describes the employed
weighting scheme using the SMART notation (kindly refer to Table 2). The first weighting
factor is the term frequency (tft,d ), where a weight is assigned to every term (t) in the
codebook according to the number of occurrences in a document (d). The second factor for
assigning weights is the document frequency (dft ). This time, dft is defined as the number
of documents that contain the term t .

Often, the inverse document frequency idft = log(N/dft ) of a collection is used to
determine weights, where N is the total number of documents in the collection. Finally, to
quantify the similarity between two documents in terms of the cosine similarity of their vec-
tor representation a normalization is applied. We note that Table 3 records only the weighing
scheme that reported the best result.

Overall, all experimental results confirm that CoMo outperforms various state-of-the-art
local and global features from the literature in all databases. The most significant observa-
tion is that the global version of CoMo outperforms the complete list of the reported global
descriptors in all bases, while its local version exceeds the performance of local CEDD in
all databases with UCID as the only exception.

A closer observation on the results reported for the UCID database, one can conclude
that the CoMo descriptor, either in its global or on its local form, performs almost identical
with CEDD. This observation confirms that the novel texture unit, based on Hu moments,
does not have a negative effect on the overall effectiveness of the descriptor. It is worth
noting that the UCID database consists only of visually similar images, and ground truths
without any rotated images.

On the other hand, experimental results on UKBench database illustrate that CoMo out-
performs not only all the other descriptors from the literature and several CNN approaches,
but also CEDD. This result confirms that the our proposed texture unit enables the descrip-
tor with invariance to alternations, since this specific dataset consists of groups of objects
under different viewpoint, rotation, scale and lighting conditions.

Table 2 SMART notation for
tf.idf variants tf df Normalization

n tft,d n 1 n 1

l 1 + log(tft,d ) t log(N/dfi ) c 1√
w2

1+w2
2+···+w2

M
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Table 3 Experimental evaluation results: show the MAP performance of the CoMo descriptor against other
local and global feature on various benchmark databases

UCID UKBench Holidays ZuBud

Descriptor WS MAP WS MAP WS MAP WS MAP

Local CoMo ltc 0.779 ltc 0.929 ltc 0.811 ltc 0.899

Local CEDD ltc 0.789 ltc 0.918 ltc 0.808 ltc 0.839

CoMo Glo. 0.684 Glo. 0.868 Glo. 0.726 Glo. 0.751

CEDD Glo. 0.674 Glo. 0.806 Glo. 0.726 Glo. 0.723

Neural Codes [3] – – – – – 0.749 – –

LF - AlexNet [40] – – – – – 0.793 – –

LF - PhilippNet [40] – – – – – 0.741 – –

LF (VLAD)- OxfordNet [35] – – – – – 0.816 – –

LF (VLAD)- GoogLeNet [35] – – – – – 0.836 – –

CNNaug-ss [46] – – – 0.911 – 0.840 – –

S.-A. co-indexing [62] – – – – – 0.809 – –

Contextual Weighting [59] – – – – – 0.781 – –

CNN-ss [46] – – – 0.869 – 0.770 – –

VLAD [24] – – – 0.847 – 0.558 – –

MF Re. X2 [47] – 0.676 – 0.842 – 0.738 – 0.727

Co-Indexing [61] – – – – – 0.809 – –

IFV [41] – – – – – 0.838 – 0.626

C.B. Embed [63] – – – – – 0.796 – –

Sp. CEDD [31] Glo. 0.732 Glo. 0.883 Glo. 0.797 Glo. 0.772

AHE+Burst [17, 56] – – – – – 0.794 – –

HE+Burst [17, 56] – – – – – 0.780 – –

RWBD [1] – – – 0.618 – – – 0.813

Salient colors [50] – – – – – – – 0.877

SURF lnc 0.626 ncc 0.691 nnc 0.678 ncc 0.613

Opponent SIFT ntc 0.624 ntc 0.593 – – – –

Color Moments [22] ntc 0.617 lnc 0.636 – – – –

SIFT nnc 0.605 nnc 0.664 ntc 0.691 ntc 0.624

ORB nnc 0.491 ntc 0.491 – – – –

Fisher [20] – – – – – 0.595 – –

BRISK [26] ntc 0.436 nnc 0.310 – – – –

JCD Glo. 0.695 Glo. 0.848 Glo. 0.735 Glo. 0.726

SCD [32] Glo. 0.496 Glo. 0.468 Glo. 0.537 Glo. 0.351

CLD [32] Glo. 0.553 Glo. 0.668 Glo. 0.640 Glo. 0.585

RGB Hist Glo. 0.587 Glo. 0.739 Glo. 0.656 Glo. 0.587

OppHist Glo. 0.590 Glo. 0.735 Glo. 0.658 Glo. 0.581

ACC [15] Glo. 0.708 Glo. 0.887 Glo. 0.756 Glo. 0.504

CENTRIST [21] Glo. 0.560 Glo. 0.564 Glo. 0.605 Glo. 0.029

Sp. CENTRIST [21] Glo. 0.639 Glo. 0.711 Glo. 0.674 Glo. 0.105

PHOG [4] Glo. 0.537 Glo. 0.508 Glo. 0.604 Glo. 0.442

EHD [60] Glo. 0.502 Glo. 0.483 Glo. 0.555 Glo. 0.382
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Table 3 (continued)

UCID UKBench Holidays ZuBud

Descriptor WS MAP WS MAP WS MAP WS MAP

LBP [37] Glo. 0.533 Glo. 0.530 Glo. 0.558 Glo. 0.132

RILBP [37] Glo. 0.491 Glo. 0.413 Glo. 0.507 Glo. 0.055

WS corresponds to the selected Weighting Scheme while Glo. corresponds to global descriptors

Bold text indicates best reported performance in each database

Experimental results on Holidays dataset reinforce our conclusions thus far with reagrds
to the ability of the proposed descriptor to retrieve both, semantically similar images, as well
as, images with a similar visual concept. A study in [7] describes and identifies what fam-
ily of descriptors is preferable and most suitable for each retrieval scenario. The Holidays
dataset is considered a challenging set of images mainly because it contains several images
with highly variable poses, and significant amounts of background clutter. Moreover, sev-
eral classes are characterized by the objects they depict rather than spatial properties of the
images. Figure 6 illustrates an indicate example where all images belong to the same ground
truth. The reader can easily observe that instances b–f can be considered as relevant since
they represent the same visual concept. On the other hand, instance (a) is considered relevant
with the rest of the images only because it depicts a semantically similar concept. CoMo
performance, especially in its local form, indicates that the proposed descriptor outperforms
the vast majority of the listed methods and descriptors.

Further observing the reported results, we noted that some recently proposed approaches
reported slightly better retrieval performance against CoMo. Specifically, the CNNaug-ss
proposal, introduced in [46], reports an improvement of 3.56% for the Holiday database.
At this point and for the specific proposal we highlight that CNNaug-ss is based on a
deep learning approach that is highly dependable on a training procedure that requires a

Fig. 6 Holidays: a sample set of relevant images
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large number of training data to be made available. In contrast, the CoMo descriptor is
a plug-n-play method which can be adopted without any prior initialization or training.
In addition, compared to other recent CNN-based approaches, CoMo produces better or
comparable results. The performance of the proposed descriptor is competitive compare
to the deep learning-based method proposed in [35], which involves the pre-trained on
imagenet, OxfordNet and GoogLeNet networks. Moreover, the CoMo’s retrieval accuracy
significantly outperforms the solution propoded in [3].

The foremost advantages of extracting CoMo is the low cost of the single-feature space
computations along with the fact that indexing one image is independent of the type or
the total number of images in the collection. Moreover, there are domains where training
data is not readily available and the image data should either not leave or enter a controlled
environment. All domains require hand-crafted image descriptors, from which the image
visual content cannot be reconstructed.

Finally, CoMo reported a remarkable performance over the ZuBud dataset. Percentage-
wise, local version of CoMo outperformed the local version of CEDD by 18.6%. At the
same time, global version of CoMo exceeded the performance of global CEDD by 10%.
Moreover, the proposed version of CoMo outperformed significantly all the other reported
methods and descriptors. The results highlight the strong ability of CoMo to remain invari-
ant to translation, rotation, and even small modification of the object’s aspect (e.g., when an
object is partially covered – refer to Fig. 7).

Another significant conclusion worth noting is that in all datasets, the local version
of CoMo outperformed its global form. This observation confirms the idea on revisiting
global features’ description methods and localizing their effect by applying them on local
neighborhoods. This idea could introduce a whole new generation of robust local features.
Experimental results also indicated that for image retrieval tasks, it is not vital to employ
computationally demanding point-of-interest detectors to extract image regions. Accurate
image retrieval results may be obtained by adopting a uniform, random, multi-scale image
patch generator.

Fig. 7 ZuBud: example of images taken from random viewpoints
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Additionally to the above discussion we report that the local version of the CoMo
descriptor has the following key advantages:

i. when adopting the BoVW model in real-world databases, there is an urgent need
for establishing an efficient method of finding the most appropriate codebook size.
Moreover, the BoVW approach adapts textual term weighting schemes for relevance
estimation. Identifying the most appropriate weighting scheme for each database is not
trivial. For the CoMo case, the best retrieval results were performed using the same
codebook size and the same weighting scheme on all databases;

ii. codebook sizes ranging from hundreds to millions of visual words are reported in the lit-
erature. For the CoMo case, a compact codebook of 2048 words manages to outperform
more than 35 methods and descriptors from the literature.

For completeness, it is worth noting that the proposed descriptor outperforms the only
moment-based local descriptor in UCID and UKBench databases. In the case of UCID, the
improvement is equal to 21%, while in the case of UKBench, CoMo reports an improvement
of 31%.

As reported by our experimental evaluation, both CEDD and CoMo representations
demonstrate an impressive performance, thus both methods can be safely recommended as
preferable for image retrieval tasks. In all databases, CEDD and CoMo descriptors report
stable and robust performances. Therefore, we recommend their usage for the selection of
features with high confidence, that will produce accurate retrieval results in a variety of
topics and scenarios. Moreover, robustness to several conditions, such as rotation, is often
required/desirable. Real-world image retrieval systems, as well as, Simultaneously Local-
ization and Mapping (V-SLAM) mechanisms should be able to successfully handle such
kind of images. As mentioned earlier, CEDD can tolerate reasonable rotations, but no prior
research has determined its level of invariance.

Discussion on the rotation invariance of CoMo Similarly to CoMo, CEDD’s histogram
consists of 6 texture areas. The first area describes regions with no texture, the second one
corresponds to regions with horizontal activity while the third one to regions with vertical
activity. The next 2 areas describe the regions with 45◦ and 135◦ respectively. Final, the last
region corresponds the the non-uniform texture regions. A graphical representation of the
CEDD’s texture regions is illustrated in Fig. 8a.

Assume for example that an input image contains only a set of vertical lines. The visual
content of this image produces a CEDD descriptor which contains non-zero bin-values only
at the third region, as presented in Fig. 8b. In the sequel, lets assume that one rotates the
image by 90◦. Now, the visual content of the image depicts a set of horizontal lines and
the corresponding CEDD descriptor contains non-zero bin-values only at the second region
(Fig. 8c). The Euclidean or Tanimoto distance between the original and the rotated image is
definitely not equal to zero. This observation reveals that CEDD descriptor is not invariant
under the 90◦ rotation. But what if one rotates the already rotated image by additional 90◦
- or rotates the original image under 180◦. In this case, the rotated image will display a set
of vertical lines, and the CEDD descriptor would be identical with the one of the original
image. In other words, CEDD descriptor demonstrates zero tolerance under the 90◦ rota-
tion but in case of 180◦, identifies that the images are identical. To conclude, CEDD can
be conditionally classified as a rotation invariant feature since it is able to tolerate under
specific rotations and retrieve effectively visually similar images on several benchmarking
databases. But on the other side of the spectrum, this partial invariance may result to poor
and inaccurate retrieval results under real life conditions and V-SLAM scenarios.
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Fig. 8 a The 6 texture regions that CEDD uses, CEDD descriptor of an image that contains only vertical
lines, CEDD descriptor of an image that contains only horizontal lines

By replacing the CEDD’s texture extraction unit with the one that uses the HU moments,
we managed to deliver an unconditionally rotation invariant descriptor. Experiments on all
databases were repeated, but in this instance, the queries were rotated with rotation angles
of 90◦, 180◦ and 270◦, respectively.

Table 4 displays the retrieval results and exposes new observations. In all databases, the
proposed descriptor, either on its global or local form, accomplished to maintain its original
retrieval accuracy. The 90◦ and 270◦ rotation experiments revealed the fact that CEDD is

Table 4 Experimental
evaluation results: show the MAP
performance of the CoMo
descriptor against CEDD one on
various benchmark databases
from the literature under several
rotation alternations

Rotation Angle UCID UKBench Holidays ZuBud

0◦ CEDD 0.675 0.803 0.726 0.723

Local CEDD 0.789 0.918 0.808 0.834

CoMo 0.684 0.868 0.726 0.751

Local CoMo 0.779 0.929 0.811 0.899

90◦ CEDD 0.347 0.507 0.436 0.385

Local CEDD 0.695 0.878 0.719 0.582

CoMo 0.657 0.870 0.720 0.751

Local CoMo 0.772 0.925 0.806 0.902

180◦ CEDD 0.633 0.749 0.717 0.718

Local CEDD 0.797 0.913 0.811 0.821

CoMo 0.660 0.869 0.713 0.746

Local CoMo 0.763 0.926 0.806 0.884

270◦ CEDD 0.391 0.508 0.440 0.384

Local CEDD 0.701 0.877 0.724 0.567

CoMo 0.683 0.867 0.725 0.742

Local CoMo 0.779 0.927 0.804 0.889
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extremely sensitive to rotations that alternate the texture’s orientation. In case of UCID,
percentage wise, the CEDD’s accuracy was reduced by 48.6%, in case of UKBench by
36.9%, in case of Holidays by 39.9% and in case of ZuBud by 46.8%.On the other hand,
on all databases, the 180◦ rotation experiments demonstrated that CEDD can successfully
tolerate these alternations.

6 Conclusion

This paper introduces a new low-level feature for image retrieval. The main novelty of the
proposed feature lies in the usage of moment invariants along with the color unit of CEDD
as descriptors of local image patches. The findings from the experimental evaluation clearly
shown that the proposed descriptor outperforms not only localized CEDD but also other
state-of-the-art local descriptors. We plan to extend the experiments by benchmarking the
descriptor against other databases used in image retrieval research. The proposed descriptor
and its source code is part of the LIRE [30] library1 and can be used under the GNU GPL
license.

References

1. Aslan S, Akgül CB, Sankur B, Tunali ET (2017) Exploring visual dictionaries: a model driven
perspective. J Vis Commun Image Represent 49:315–331. https://doi.org/10.1016/j.jvcir.2017.09.009

2. Bay H, Tuytelaars T, Van Gool L (2006) Surf: speeded up robust features. In: Computer vision–ECCV
2006. Springer, pp 404–417

3. Babenko A, Slesarev A, Chigorin A, Lempitsky VS (2014) Neural codes for image retrieval. In: Com-
puter Vision - ECCV 2014 - 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part I, pp 584–599, https://doi.org/10.1007/978-3-319-10590-1 38. https://dblp.org/rec/
bib/conf/eccv/BabenkoSCL14. dblp computer science bibliography, https://dblp.org

4. Bosch A, Zisserman A, Munoz X (2007) Representing shape with a spatial pyramid kernel. In: Proceed-
ings of the 6th ACM International Conference on Image and Video Retrieval, CIVR 2007, Amsterdam,
The Netherlands, July 9-11, 2007, pp 401–408, https://doi.org/10.1145/1282280.1282340. https://dblp.
org/rec/bib/conf/civr/BoschZM07. dblp computer science bibliography, https://dblp.org

5. Chatzichristofis S, Boutalis Y (2008) Cedd: color and edge directivity descriptor: a compact descriptor
for image indexing and retrieval. Comput Vis Syst 5008:312–322

6. Chatzichristofis SA, Zagoris K, Boutalis YS, Papamarkos N (2010) Accurate image retrieval based on
compact composite descriptors and relevance feedback information. Int J Pattern Recogn Artif Intell
(IJPRAI) 2:207–244

7. Chatzichristofis SA, Iakovidou C, Boutalis YS, Oge M (2013) Co.vi.wo.: color visual words based on
non-predefined size codebooks. IEEE Trans Cybern 43(1):192–205

8. Csurka G, Dance C, Fan L, Willamowski J, Bray C (2004) Visual categorization with bags of keypoints.
In: Workshop on statistical learning in computer vision, ECCV, vol 1

9. Deselaers T, Keysers D, Ney H (2008) Features for image retrieval: an experimental comparison. Inf
Retr 11(2):77–107

10. Eisa M, Eletrebi A, Elhenawy E (2013) Enhancing the retrieval performance by combing the texture and
edge features. CoRR, arXiv:abs/1301.2542

11. Fond A, Berger M-O, Simon G (2017) Facade proposals for urban augmented reality. In: 16th IEEE
International symposium on mixed and augmented reality (ISMAR)

12. Gholipour F, Ebrahimnezhad H (2014) An efficient content based image retrieval using edge orientation
co-occurrence matrix. In: 2014 6th Conference on information and knowledge technology (IKT). IEEE,
pp 67–72

1http://www.lire-project.net/

https://doi.org/10.1016/j.jvcir.2017.09.009
https://doi.org/10.1007/978-3-319-10590-1_38
https://dblp.org/rec/bib/conf/eccv/BabenkoSCL14
https://dblp.org/rec/bib/conf/eccv/BabenkoSCL14
https://dblp.org
https://doi.org/10.1145/1282280.1282340
https://dblp.org/rec/bib/conf/civr/BoschZM07
https://dblp.org/rec/bib/conf/civr/BoschZM07
https://dblp.org
http://arXiv.org/abs/1301.2542
http://www.lire-project.net/


Multimed Tools Appl
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