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Composite description based on Salient Contours
and Color information for CBIR tasks

C. Iakovidou, N. Anagnostopoulos, M. Lux, K. Christodoulou, Y. Boutalis and S. A. Chatzichristofis

Abstract—This paper introduces a novel image descriptor
for content based image retrieval tasks that integrates contour
and color information into a compact vector. Loosely inspired
by the human visual system and its mechanisms in efficiently
identifying visual saliency, operations are performed on a fixed
lattice of discrete positions by a set of edge detecting kernels that
calculate region derivatives at different scales and orientation.
The description method utilizes a weighted edge histogram where
bins are populated on the premise of whether the regions contain
edges belonging to the salient contours, while the discriminative
power is further enhanced by integrating regional quantized
color information. The proposed technique is both efficient and
adaptive to the specifics of each depiction, while it does not need
any training data to adjust parameters.

Experimental evaluation conducted on seven benchmarking
datasets against 13 well known global descriptors along with
SIFT, SURF implementations (both in VLAD and BOVW), high-
light the effectiveness and efficiency of the proposed descriptor.

Index Terms—Image Retrieval, Multimedia Retrieval, Global
Features.

I. INTRODUCTION

CONTENT -based image retrieval (CBIR) is one of the
fundamental research challenges extensively studied by

the multimedia community for decades, due to its wide range
of applications in information retrieval and computer/robotic
vision systems. The term “content-based” refers to the fact that
the indexing and searching mechanisms depend on information
derived from features extracted by the image itself like,
texture, color, shape, etc., rather than assigned text annotations.
Thus, the goal of any CBIR system is to vectorize an image
based on extracted features in a way that grasps its unique
characteristics, and visual content.

A long debate has been going on concerning the most
effective way to treat an image for indexing and retrieval [1],
[2]. Several approaches for CBIR have been proposed and
evaluated employing a wide spectrum of strategies from global
to local features representations. Whether hand-crafted and
tuned based on domain knowledge or learned directly from
raw data, all attempts try to address a main challenge; i.e.,
narrowing the “semantic gap” that exists between low-level
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image pixels captured by devices, and high-level semantic
concepts perceived by humans. Research conducted so far
on retrieval methods suggests that each of the proposed
approaches has its own benefits and certain limitations [3],
[4] and despite the promising results reported, the underlying
theoretical foundation does not yet clearly argue the conditions
that characterise which strategy performs better or outperforms
other approaches, or how to determine the optimal structure
for a certain task [5].

In contrast, human vision has a remarkable proficiency
and an unmatched adaptability when dealing with various
computer vision tasks. Concerning image representation and
understanding, humans’ successful perception in categorizing
images and spotting similarities between depictions begins
by intuitively understanding the intention of the composition.
Thus, from an abstract high-level understanding of the image,
a human observer begins the process of interpretation by
extracting rich information from images, effortlessly judging
the saliency of image regions, with an attention to the im-
portant parts. More specifically, theories of human attention
hypothesize that the human vision system only processes
(salient) parts of an image in detail, while leaving others nearly
unprocessed [6], [7]. Saliency originates from visual stimuli
that instigates visual uniqueness, rarity or surprise, and is often
attributed to variations in image attributes like color, gradient,
edges, contours and boundaries [8].

Visual saliency has been successfully explored as an effi-
cient pre-processing step for image segmentation, classifica-
tion, and object recognition [9], [10], [11], [12]. In contrast
to the image classification or object detection problems that
consist of labeling input images with a probability of the
presence of a particular visual object class, and an estimation
of the object’s position, CBIR is not always about direct
object matching between query and dataset. A wide range
of image retrieval tasks also aim to rank similar images to
a given query by evaluating the scene. While research in
scene understanding often treats objects as the atoms of scene
recognition, behavioral experiments on fast scene perception
suggest that most real-world scenes can be inferred from
the arrangement of the basic geometrical forms, the spatial
relationship between regions and blobs of a particular size,
and aspect ration [13]. Moreover, other research [14], [15]
suggests that even coarse color information in the represen-
tation significantly boosts fast scene recognition, while, in
addition to colors, the configuration of contours can help
predict presence or absence of objects in images and determine
with a high probability basic-level classes of environmental
scenes (e.g. forest, building, street), as well as global properties
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of the three-dimensional space (e.g. perspective, clutter) [13],
[16], [17]. To that extent, global features that capture the
diagnostic structure of an image based on visual saliency,
can significantly improve the performance of retrieval tasks
of natural-scenes with advanced computational efficiency.

To sum up, extracting rich information from images is a
multifold problem thus, making sense of a depiction can poten-
tially include many computations related to extracting, evalu-
ating and forming feature representations of the contents. Even
though significant advancements have been made possible by
the broader image processing scientific community, combin-
ing different features and techniques remains a challenging
process. A major challenge derives from estimating the best
trade-off between a successful description and computational
costs. Another challenge relates to the process of combining
different image features into a single signature so that the
similarity between vectors/images is measurable. In addition,
as image collections are expanding, a CBIR system should
be capable of undertaking and processing a massive load of
already accumulated data that are dynamically populated by
images that vary in their respective properties, such as size
and resolution, color depth and encoding.

Considering the aforementioned raised topics and chal-
lenges, our design strategy is grounded on the following key
properties:
(1) produce a descriptor that looks for meaningful visual

information globally; the descriptor should be capable of
differentiating between the salient parts from non-salient
but account for both,

(2) make the descriptor adaptive to the specific contents of the
depictions in hand; the manual tuning of free parameters
is an impractical strategy, thus, an unsupervised adaptive
descriptor is more advantageous when it comes to real life
retrieval tasks, and

(3) create an efficient descriptor; specifically, by efficient we
mean: (i) to reduce the computations required and the
overall complexity to the minimum, (ii) to design an
implementation that is parallel-execution friendly, and (iii)
to consider the storage requirements and search time by
keeping the descriptor compact.

In that sense, this work introduces a novel global image
descriptor for image retrieval tasks that incorporates all the
aforementioned desired properties ensuring, that the proposed
method is both effective and efficient. Feature extraction is
based on a weighted, quantized edge histogram where bins
are populated on the premise of whether the image regions
contain edges belonging to the salient contours of the depiction
or not, loosely inspired by the human visual system and its
operations in identifying visual saliency. To achieve a good
level of discrimination the proposed method utilizes spatial
information (i.e., image composition) in a multiscale search.
Further, in order to complete our description the method em-
ploys quantized color information. The result of the description
process is a composite and compact 120-bin descriptor.

During the design of the methodology, a top priority was
set to eliminate as many free parameters as possible, focusing
instead on developing an adaptive, fully unsupervised algo-
rithm that allows extraction of features and image description

for a variety of images. In particular, through this work we
contribute the following: (i) a fully unsupervised, parameter-
free adaptive image descriptor; (ii) a novel feature extraction
strategy which builds on weighted quantized edge histograms;
and (iii) a large scale experimental evaluation on seven bench-
marking datasets against 13 well known global descriptors.

II. RELATED WORK

CBIR is a long studied field with a significant amount
of contributions over the last two decades. In what follows
we briefly revisit the related work organized by the type
of features employed for CBIR, pointing out their scope,
advantages and limitations.

Global features representations vectorize image contents by
extracting features, such as, color, texture and shapes over
the whole image. In order for the representation to have
some degree of invariance in terms of rotation, scale, light-
ing conditions, viewpoint change etc., quantized histogram
representations are preferred. Often, such representations are
normalized either locally based on the histogram, or globally
based on the corpus [18], [19]. Examples of global descriptors
from the literature include texture based descriptors, such as,
the Edge Histogram Descriptor - EHD [20], Local Binary
Patterns - LBP [21], and Rotation Invariant LBP [21] that
represent the spatial distribution of edges and local texture
patterns. Alternatively, shape descriptors, such as, Pyramid
Histogram of Oriented Gradients - PHOG [22] that builds
upon Histogram Oriented Gardients (HOG) [23] to repre-
sent the spatial layout of local image shape, and (CENsus
TRansform hISTogram - CENTRIST [24] and its variant
Spatial CENTRIST [24], that encode the structural properties
within an image suppressing detailed textural information for
scene recognition. Other methods focus on color information
for building global image descriptions. To name a few, the
RGB Histogram descriptor [2] approximates the distribution
of colors subdividing the RGB color space, the Opponent
Histogram descriptor [25] uses a combination of three 1-
D histograms of the three channels of the opponent color
space presenting shift-invariance with respect to light intensity,
the Auto-Color Correlograms descriptor [26] measures and
encodes how often color x occurs in the immediate vicinity
of color x, while from the MPEG-7 family of descriptors the
Scalable Color Descriptor - SCD [27] builds a color histogram
in a fixed HSV space through a uniform quantization of
the space, while the Color Layout Descriptor - CLD [27]
represents the spatial distribution of the colors in images. Over
the last few years, several attempts focused on combining
multiple types of features to improve retrieval accuracy.

However, feature fusion, which is repeatedly reported to per-
form superiorly [28], relies on early or late fusion techniques
that increase both the complexity and the overall execution
time for indexing and retrieval tasks. To surpass these draw-
backs composite descriptors were introduced. Representative
examples of such are the Color and Edge Directivity Descrip-
tor - CEDD [18] that utilizes both color and edge information
in a compact, quantized manner, and the Fuzzy Color and
Texture Histogram descriptor - FCTH [19] that encodes texture
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using the high frequency bands of the Haar wavelet transform
together with color information.

The foremost advantages of extracting global features is
the low cost of the single-feature space computations. An
additional advantage of such features is the fact that indexing
one image is independent of the type or the total number of
images in the collection. However, annotating an image solely
by a global feature vector often leads to a rather generalized
outline of its visual information. Therefore, retrieved results
to a given query usually manage to capture visual similarity
but often lack in extracting semantic similarity.

Local features representations, on the other hand, manage
to include correct results even for verbose images or images
where objects appear with partial occlusions. This property has
been especially useful for image classification and object/face
recognition tasks [29], [30], [31], [32]. For CBIR many
techniques have been proposed [33], [34], [35], [36], [3], [37]
that utilize extracted local features and then aggregate them
so as to form a single vector representation, i.e., an image
descriptor for index and retrieval. Methods that employ local
image features search for salient image patches which are
local extrema of some function on the image -like edges,
corners and blobs-, detecting and then describing what is
commonly referred to as points-of-interest (POI). Among the
most popular POI and blob detectors are SIFT [38] and SURF
[39]. Typically, after feature extraction, samples are forwarded
to a classifier to form codebooks or vocabularies. Later, an
aggregation step takes place employing models such as Bag-
of-Visual-Words or Vector of Locally Aggregated Descriptors
[40], so as to result to a single descriptor.

The enhanced retrieval robustness, however, comes with a
higher computational cost and limited scalability. The process
of extracting the local features, evaluating and classifying them
takes place in a high dimensional feature space, and thus, a
considerable complexity is introduced. Another considerable
drawback of such approaches is related to the formation of the
codebooks. Apart from the many free parameters introduced
when employing codebooks; such as, deciding the optimum
clustering size and technique, weighting its terms according to
the specific statistics of the collection, and deciding whether
the terms found in the images will be hard or soft assigned
to the codebook terms, probably, the most limiting aspect of
such approaches lies in the fact that a new codebook needs
to be computed each time a significant amount of images is
added to an indexed collection. This introduces the need of re-
indexing the whole dataset in order for the retrieval to remain
robust.

Deep learning methods, are recently gaining traction and
outperform the traditional low level features in many vision
tasks [41], [42]. Despite recent research attention on applying
deep learning techniques for image classification and recog-
nition in computer vision, there is still a limited amount of
attention focusing on applications for CBIR [43], [4]. Finding
the link between pixels and semantic understanding with
deep learning is approached by training large neural networks
on datasets that either define pairwise image similarity or
categories for images like the popular ImageNet dataset [44];
which includes 14, 197, 122 images in 21, 841 synsets. In

a neural network the weights are learned by using large
training sets and the output of the last layers can then be
used as a global image feature. While the use of a neural
network, in an optimal case, provides the best possible global
feature according to the training data, common drawbacks are
concerned with: (i) the significant processing time required to
calculate the weights for deep networks, i.e., model creation;
(ii) finding enough data for a domain to train a model
to achieve optimal retrieval performance [45]; (iii) finding
an optimal model architecture and learning strategy for the
domain and scenario, and (iv) the vectors generated by the last
layers of a neural network are typically rather large and not
quantized, therefore hard to handle on limited resources [46].
For the first two drawbacks, with regards to machine learning,
typically transfer learning techniques are applied [47], [45].
However, limitations for transfer learning still apply if there
are no or only ill-fitting source models for transfer learning.
Moreover, approaches based on transfer learning are often not
robust to scaling, cropping and cluttered images [41].

Overall, deep learning based techniques require a significant
amount of data for training computations, and for generating
accurate results. In addition, such techniques require training
the model to a specific domain that requires the identification
of the appropriate dataset. Such a process is only made
feasible with the existence of experts in data science or ma-
chine learning. Notwithstanding the significant improvements
introduced by such approaches, in some use cases and in
special domains, large repositories of images are not readily
available and one cannot employ external experts into the
project. Examples include: commercial image search engines;
where images are not transferred unless payment is done,
classification of explicit material; where transmission of the
data defeats the purpose of a filter, or large scale investiga-
tions of criminal material; for instance, cases involving child
abuse. These scenarios indicate examples where training data
are not always sufficient or easily accessible, especially in
controlled environments; where access to sensitive image data
is not always permitted. Moreover, the probably best-known
disadvantage of deep learning approaches is their “black box”
nature, meaning that we don’t know how and why a Neural
Network came up with a certain output.

III. SACOCO: METHOD DESCRIPTION

The Salient Contours and Color information Descriptor
(SaCoCo), comprises of two main unsupervised processing
units: (i) the Contour Unit; for extracting the contour informa-
tion, and (ii) the Color Unit; for integrating color information
through a two-staged fuzzy-linking scheme.

Inspired by the effectiveness of the Human Visual System
(HVS) in being able to achieve the designed considerations
mentioned above, our method is loosely based on the way
neurons of the primary visual cortex promote the integration
of salient contours. Thus, before proceeding with laying out
the details of the proposed methodology along with its imple-
mentation details, we briefly introduce the fundamentals with
regards to the HVS.

The Human Visual System: The primary visual area,
also known as Area 17, forms the first link in the chain of
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cerebral analysis of a visual image [48]. The neurons forming
the primary visual cortex have a hierarchic organization, a
functional specialization while the spatial precision of the con-
nections within the system allows retinotopic representation
in the visual cortex, i.e., each point of the retina is projected
into a specific area of the cortex. The cortex comprises of au-
tonomous sets of neurons, organized into basic functional units
known as hyper-columns that are responsible for analyzing
independently a precise zone of the visual field. Each hyper-
column is made up of multiple orientation columns, two ocular
dominance columns, and blob regions which are sensitive to
orientation/spatial frequency, color and depth, respectively.

The popular model used for depicting hyper-columns is
the pinwheel model [49], [50]. According to this model, the
center of a hyper-column is occupied by cells that respond
and identify the wavelength of light incident to the retinal part
to which they are attached. In a radial pattern around those
cells are cells responsive to edge orientation and motion in
particular directions. Moving from the top of a hyper-column
to its bottom the cells are scaled allowing thus the detection
of edges of various orientations in different scales for every
point of the visual field.

One of the main models for early vision in humans, as
proposed by Neisser [51] suggests that it consists of pre-
attentive and attentive stages. In the pre-attentive stages,
context is not taken under consideration and only image-driven
data are utilized to detect pop-out (salient) features. Next,
during the attentive stages, the detected features are grouped
and classified based on their distinct characteristics.

On another note, Marr [52] focused on the computational
analysis of vision. Marr modeled the human visual system into
three associated processing stages that transform a structure-
less two-dimensional representation of the visual scene into
a three-dimensional representation of the visual environment,
that can serve as input to recognition and classification pro-
cesses.

During the first stage, the image information is processed so
as to obtain what is referred to as the primary sketch; an image
of salient contours similar to the one obtained when squinting
the eyes. The primary sketch emphasizes on visual stimulation
landing on the retina, particularly on changes in intensity
values along with their geometry and overall organization. The
process of exporting the primary sketch of a visual scene is
based on the calculation of zero-crossings (changes from light
to dark). Characteristics represented in the primary sketch are
exported consecutively for different scales. This allows the
separation of the main characteristics from details.

The next higher processing stage produces the 2.5 dimen-
sional sketch that displays orientation of visible surfaces in
viewer-centered coordinates, while the third and final stage is
a three-dimensional object-centered representation where the
scene is visualized in a continuous, 3-Dmap, hierarchically
organized in terms of surface and volumetric primitives.

The proposed approach aims in simulating the pre-attentive
stages of vision as defined by Neisser to achieve a light-
weighted implementation. The pop-up features we are extract-
ing (contours) refer to the first stage of Marr’s computational
analysis of vision and are the building blocks of our scheme.

Thus, even though our method is not tuned for precise salient
contour extraction we still emphasize the extraction process,
and provide visualized output results of the extracted contours
in subsequent sections.

A. Contour Unit

Scaling: The input image is re-sampled to form three
different layers of a spatial pyramid, using bilinear interpola-
tion (Fig. 1 – 1.1 Scaling). The pyramid is a data structure
consisting of the same image represented several times, at
a decreasing spatial resolution each time. Each level of the
pyramid contains the image at a particular resolution. For easy
reference the scales are named Fine, Middle and Small,
with the Fine scale being 600 × 600 pixels, the Middle
300× 300, and the Small 150× 150 pixels.

The benefits of employing the spatial pyramid approach
for our implementation is two-fold: (i) scalability; due to
the large number of images involved in CBIR, the spatial
pyramid allows us to initialize the process by normalizing the
images’ resolutions so that feature extraction, vector building,
and search can be done reliably on diverse image collections,
and (ii) standardized computational time and resources; the
controlled resolution of the images is related to computational
time and resources. Both can be foreseen and standardized,
which is a significant attribute for a variety of applications
that are either time-critical or run on limited resources.

The resolution of the three layers was heuristically cho-
sen after extensive experimental exploration and testing with
image collections varying in size, resolution, theme and their
levels of semantics in query to result relevance interpretation 1.
The chosen resolution allows for easy partitioning of all scales
during the tiling process and easy segmentation of the images
during the spatial information process (both described in the
following paragraphs). We further note that the resolutions
employed for the spatial pyramid align with the primary sketch
of Marr’s computational model [52], since they serve as a low-
cost pre-processing step to eliminate fine textures and degrade
noise.

Tiling: All three scales are partitioned into non-
overlapping 10× 10 pixels blocks (Fig. 1 – 1.2 Tiling). Every
block is independently processed by a set of 2-dimensional
oriented kernels. The inspiration behind this process is to
imitate operations of the primary visual cortex that processes
image-driven data to evaluate the parts of a scene that are
pre-attentively distinctive and present some kind of immediate
visual arousal. As mentioned earlier, each point of the retina is
projected into a specific area of the cortex where autonomous
sets of neurons, organized into hyper-columns, analyze inde-
pendently a precise zone of the visual field.

Simple oriented cells are usually modeled as 2D Gabor
filters or elongated 2D Gaussians of specific orientations that
are used as kernels convolving with an image.

1Additional, experimentation was performed on the Holidays dataset [53]
(original image resolutions are 2448×3264) by rescaling the whole collection
prior to the retrieval to: (a) 4896× 6528, (b) 1224× 1632, (c) 612× 816,
(d) 306×408, and (e) 153×204. We observed that the retrieval performance
remained stable for all test cases. The highest drop was reported for (e) where
MAP had a −0.006 difference compared to the original resolution. In (c) the
MAP score actually raised by +0.003
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Fig. 1. Graphical abstract of the Contour Unit

Gabor filters target changes in lighting and texture to analyse
the image and highlight the prominent features. They have
been employed in a variety of computer vision tasks due
to their excellent performance on orientation and spatial fre-
quency selectivity. Additionally, Gabor filters are considered a
more robust alternative to wavelets for joint space-frequency
representations of images. Unfortunately, analyzing images by
convoluting Gabor filters at pixel level is not in-line with the
discrete cortical architecture of the Human Visual System.
Moreover, the large number of convolutions executed in these
approaches coupled with the need for predefining or tuning the
parameters involved in these filters, introduce a computational
cost that is prohibitive for tasks that deal with many images,
like CBIR tasks.

An alternative strategy to reduce computational costs is to
extract local texture information employing Haar-like features
which are usually a predefined set of filters based on the
Haar wavelets. Haar-like features are described by a template
which includes connected black and white areas, their relative
coordinates to the origin of the search window and the size of
the feature, and represent a fast and simple way to calculate
region derivatives at different scales by means of computing
the average intensities of concrete sub-regions. Image repre-
sentation based on Haar-like features succeeds at capturing
local texture, however, lack orientation information.

In the proposed method we utilize a set of edge-detecting
kernels, that are an adaptation of the respective kernel-masks
presented in [54]. In contrast to the masks introduced in
[54] that represent oriented line-segments (positive) over a
background (negative), the binary masks utilized in our pro-
posed methodology consist of a dark and a light region
defining straight oriented edges. The proposed implementa-

tion is coupled with the employed Excitation Rule (Eq. 1),
that essentially implements a normalized Haar transform to
evaluate the relationship between average intensities so as to
detect edges. At the same time eliminating the need to pre-
process the input image with an edge-extraction mask, and a
zero-crossing detector.

Furthermore, in order to extract information with regards to
the orientation of the edges (during the detection stage), and
inspired by the strategies in [54], [55] the kernels are designed
to detect twelve orientations with 15o increments, which are
further grouped into four super-orientations (Horizontal, 45o,
Vertical, and 135o). In order to be in-line with the discrete
cortical architecture, computations on the image are taking
place at a fixed lattice of discrete positions and orientations.
Thus, instead of using one kernel per orientation and relying
on sliding window operations over the whole image to locate
edges, all the possible positions of the oriented segment, are
templated as sifted instances of the same orientation. With
regards to the size of the gradient orientation detection window
(which in our case also matches the size of the kernels) is set
at 10× 10 pixels. Since the image is tiled in non-overlapping
regions and each kernel directly fits on the tile’s size, it makes
sense to choose a kernel size that facilitates easy image tiling,
given that the majority of default image sizes are multiples
of 10. A kernel size of 10 × 10 pixels is of the same order
of magnitude as the cells defined in HOG, and furthermore
allows us to build a sufficient set of kernels with sifted oriented
segments. Fig. 2 presents the complete set of 58 kernels,
employed to form the model of the hyper-column; for each
of the 12 orientations an appropriate number of instances
(kernels) represents all possible positions (2-pixel shifts) of
the edge within the region of the kernel.
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Fig. 2. Modelling the hyper-column: Edge detecting kernels

The pinwheel modeling of the hyper-column (as discussed
earlier) also suggests that the multiscale search of the visual
field is achieved by differently scaled cell combinations along
the hyper-column. However, trying to scale the kernels in-
troduces uncertainties related to the appropriate number of
instances (edge shifts) per orientation, over all scales. Thus, in
our modeling, multiscale search is performed by scaling the
input image.

Similarly to [54], even though we employ a greater number
of kernels to process each tile with multiple instances of an
edge orientation, the total number of operations required is
much smaller, when compared to sliding window operations
with one kernel per orientation. Convolving a n × m image
with 12 orientation filters demands 12× n×m convolutions,
while the tiling method demands only 58× (n/10)× (m/10),
to process the same number of orientations.

Every tile of all three scaled images is processed by the
hyper-column structure to define the best fitting edge among
the 58 kernels, independently of the others. To do so, the
images are transformed to the YIQ space. The Excitation rule
that defines the confidence score ci in the interval [0,1], of
every kernel ki of the hyper-column with i in [1, 58] ∈ Z, is
implemented as follows:
For every tile t of the image,

ci =

∣∣∣∣∣
10∑
x=1

10∑
y=1

[
t(x,y) × ki(x,y)

|Li|
−

t(x,y) × (1− ki(x, y))

|T | − |Li|

]∣∣∣∣∣
(1)

where, t(x,y) is the luminance value Y of tile pixel at position
(x, y),

t(x,y) : (x, y)→ [0, 1]

ki(x,y) =

1, ∀T(x,y) ∈ Li

0, otherwise
(2)

where T denotes the set of pixels belonging to tile t; Li is the
subset of pixels in tile t that fall under the light region of a
given kernel ki, and; Di is the subset pixels in tile t that fall
under the dark region of a given kernel ki such that,

Li ∪Di = T (3)

Thus, |T | denotes the cardinality of T , i.e., number of elements
(pixels) in tile t; |Li| denotes the cardinality of Li, i.e., the
number of elements (pixels) in the Li subset, and; |T | − |Li|
equals the cardinality of Di.

When all tiles of the three images have been processed, the
method stores the position of the tile of each image along with
the respective best calculated confidence score (max at 1), and
the index i of the winner kernel in the hyper-column (i.e., the
detected orientation and super-orientation).

Spatial Information: Through the Tiling procedure our
method calculates the winner kernel along with its confidence
score for each tile-block of the images. As a later step, the
method calculates statistical data of the confidence scores
based on their spatial distribution. These data are then used
as input for filtering the kernels in an adaptive, automated
manner allowing us to differentiate between tiles containing
parts of prominent edges, and contours from tiles that do not
(background/texture).

For our model, it is essential that the input image is treated
in a fashion that enables the estimation and extraction of
the most useful object/region boundaries and contours, over
the whole depiction. However, as previously discussed, the
computation of the absolute edge-confidence value is not
indicative of the saliency of the tile. A universal hard threshold
cannot be set successfully for the segmentation process neither
per image nor over the whole collection.

Our solution considers the above limitation towards imple-
menting an adaptive, unsupervised algorithm to set thresholds.
The first step of this process is to extract information on
a local space over all three scales. Towards this direction,
our method introduces a partitioning strategy designed to be
both lightweight and effective over a variety of depictions.
Segmenting without any prior knowledge of the characteristics
of the visual composition demands complex implementations
that are not fit to be part of a CBIR system. Thus, we propose
a grid-based partitioning process that takes into account the
most commonly applied composition strategies in an attempt
to make assumptions concerning the various components that
appear in the image.

The grid-based partitioning process uses as input the Fine
scale representation of an image to partition it into smaller
regions by adapting on the classic rule-of-thirds image compo-
sition principles [56]. This rule, apart from being widely used
in professional photo-shooting, is also being embedded as a
default assistance software for both mobile, and standalone
commercial cameras. The basic principle behind the rule-
of-thirds is to break a given image down into thirds (both
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horizontally and vertically) resulting with nine parts. The pro-
duced grid identifies lines and intersections to place important
parts of the image. Fig. 3 depicts the partitioning of an input
image based on the rule-of-thirds, and our adaptation. More
specifically, the depicted grid is created using the horizontal
lines 1h and 2h, along with the vertical lines 1v and 2v.
The proposed partitioning uses the same lines for the vertical
sectioning but replaces the horizontal lines (1h and 2h) with
only one line located in the middle of the image.

This is essential for the partitioning process to ensure that
the horizon line (an important contour according to the rule-
of-third) is placed either along line 1h or 2h and is not lost due
to the partitioning. A subsequent section on Filtering discusses
thoroughly, how the image segments are evaluated separately
from one another; statistical data of the confidence values that
exist in each image part help to adaptively define a unique
threshold to filter edges belonging to texture and background,
from prominent edges and contours.

Furthermore, it is common practice to place the main theme
of the composition inside the conceivable circle as shown in
the center of the image with a radius equal to the 1/4 of the
diagonals (this is depicted in Fig. 3 as green points). If this
is the case, by employing the proposed partitioning strategy
we ensure that all six segments contain both parts of the
main depiction, as well as, background. Again, the prominent
edges of the main objects in the image are used to separate
background from foreground.

Each first-level segment of the proposed partitioning process
of the Fine scale represents the 1/6 of the image. Since
the Fine scale holds substantial information compared to the
other scales, we further partition each first-level segment into
smaller segments to gain a second-level of even more localized
aspects of the depiction.

To sum up, as shown in Fig. 1 (see 1.3 – Spatial Infor-
mation) the Fine scale is partitioned into six equally-sized
subregions [Af −Ff ], where each one of them is further par-
titioned into six smaller regions [a1−6, ..., f1−6]. The Middle
scale is partitioned into four equally-sized regions [Am−Dm],
whereas the Small scale is not further partitioned.

The sizes of the regions and subregions over all scales i.e.,
the number of tiles comprising each segment (as shown in
(Fig. 1 – 1.3 Spatial Information) are defined as follows:

• Fine scale: af is to Af as Af is to ImageFine

• Middle scale: Amis to ImageMiddle as ImageMiddle

is to ImageFine

• Small scale: ImageSmall is to ImageMiddle as Am is
to ImageMiddle.
Filtering: This step enables the proposed method to

adaptively differentiate between image tiles that are charac-
terized as contours (salient edge information), and tiles that
are classified as background/texture information. Two filtering
stages are proposed; stage-1: the derived localized thresh-
olds are used to filter separately (but not independently) each
of the three scales, and stage-2: the filtered results per scale
are combined to further filter the final contour representation
of the Fine scale.

Filtering – Stage-1: At this stage we compute a number
of statistical measures for each of the three scales that will

Fig. 3. (a) The proposed partitioning (red and white) against the rule-of-thirds
partitioning; (b) middle lower part segment of the proposed partitioning; (c)
middle lower part segment based on the rule-of-thirds grid. By observing the
two example segments in b and c, it is evident that if we require to calculate for
an adaptive threshold to extract only the most salient edges, based completely
on the particular segment, processing the upper segment yields a more strict
(higher) threshold due to the strong edges of the horizon that downgrade the
edge information of the grass texture.

allow us to filter each scale with thresholds that adapt to
different levels of spatial correlation. Specifically, we measure
the mean confidence score over all tiles per scale, denoted as
(c̄f , c̄m and c̄s), and the respective coefficient of variation,
denoted as (CVf , CVm and CVs). These measures serve as
an initial rough indicator of the global characteristics of the
depiction.

A] The Fine scale: The objective for this scale is to
automate the computation of a total of 36 adaptive thresholds,
one for each of the second-level regions (a1−6 − f1−6). The
process of setting these thresholds (TR2) involves a cascade of
information deriving from spatial statistic extracted at different
levels and scales. More specifically, information is transferred
from calculations (i) over the first-level regions (TR1); (ii) over
the whole image (TI); and (iii) at all employed scales.

Initially, and consulting the information from the computed
CVf for the Fine scale, we concluded the following. A
CVf > 1 suggests that the data (i.e, confidence scores over the
whole image) present a high variance. The higher the CVf , the
safer it is to set an Image Threshold (TI ) at the calculated mean
confidence value of the image or, for a stricter classification,
even higher than that. Thus,

TI = c̄f ∗ CVf . (4)

In contrast, when CVf < 1 the data present a low variance,
which is related to a number of reasons. For instance, low
variance is reported for: (i) images where there are no clear
winners (i.e, a lack of salient edges from prominent objects);
(ii) images of overall low contrast (in that case c̄ is also
relatively low), and (iii) images of cluttered scenes or repetitive
texture patterns (in these cases c̄ is relatively high). Therefore,
for the CVf < 1 case, the definition of the (TI ) takes into
account information from the other two scales so that,

TI = c̄f + c̄f ∗ C̄V f,m,s (5)
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where,

C̄V f,m,s =
CV f + CV m + CV s

3
. (6)

In cases of problematic images the method yields different
C̄V f,m,s. As an example consider the case where the Fine
scale presents a low variance due to fine texture over an
extended part of the image (e.g., grass). In this case, the CV
of the smaller scales, that degrade this type of textures, will be
significantly higher. On the other hand, when the low variance
presented is a result of low contrast, CV will be low for all
the three scales, and TI will not be much higher than the
computed c̄f (Eq. 5)

Next, the computed TI is compared with the mean confi-
dence scores (c̄R1) of the six first-level regions (Af−Ff ). The
six thresholds of these regions (TR1) are computed as follows:

TR1 =


2c̄R1 − c̄2R1

TI
, TI ≥ c̄R1

2TI − TI
2

c̄R1
, otherwise

(7)

To define TR1 a conservative strategy is followed. The
smallest value between the previously calculated TI of the
image and the mean confidence value of the region at hand,
c̄R1 is discovered. Then, the threshold for the region is defined
as the smallest value increased in relation to the percentage
they differ.

This strategy prohibits the over-filtering of parts of the
image with localized strong edges among an overall low
contrast image, or the under-filtering of local parts of the
image when overall there are strong edges in other areas of
the depiction. For instance, consider an image that depicts
grass and has a prominent object only in the upper left part of
the image. The confidence values will be low for almost the
whole depiction with the only exception being the region that
contains the object. Even though, based on this region’s mean
confidence, the threshold is expected to be high, it is unfair,
compared to the rest of the image to over-filter it. Instead, the
actual region’s threshold will be set at max, that is equal to
2 ∗ TI . In the opposite case, where strong edges exist and
are extracted over the whole depiction but one region has
limited to no edges (e.g., a part depicting the sky with soft
clouds), the process defined by Eq. 7 will consider the overall
scores embedded in TI and increase the region’s threshold up
to double, i.e., its mean confidence value.

Finally, for every second-level region, the method calculates
it’s mean confidence value c̄R2, compare it to the respective
TR1 of the first-level region that it belongs to, and defines the
threshold TR2 as follows:

TR2 =

 c̄R2, c̄R2 ≥ TR1

TR1, otherwise
(8)

The 36 TR2 thresholds computed are then used to guide the
classification process of the tiles as carrying salient contours
or not, each at its respective set of tiles on the image.

B] The Middle scale filtering follows the exact same
procedure as described for the Fine scale, up to threshold
TR1. Initially, the overall Image Threshold TI is computed

by applying the Eq. 4 and 5, and then the method proceeds
by deriving the four thresholds for the regions Am −Dm as
depicted in Fig. 1 – 1.3 Spatial Information) using Eq. 7.

C] Due to the heavy scaling that has already degraded the
fine texture and weak edges, all tiles from the Small scale are
filtered by a single threshold, the c̄s lowered by 10%. Any tile
scoring a confidence value lower than c̄s ∗0.9, is characterized
as non-contour.

Filtering – Stage-2: This stage enables the method to
further filter the previously characterized contour-carrying tiles
of the Fine scale. The image area that a single tile of the
Small scale occupies corresponds to a respective 2× 2 tiles’
area in the Middle scale, and a 4×4 tiles’ area in the Fine
scale. Thus, if a single tile of the Small scale along with the
respective 2 × 2 tiles of the Middle scale are classified as
non-contour, then all tiles from the respective 4×4 tiles’ area
of the Fine scale are getting filtered.

Fig. 4 visualizes example outcomes derived from the Con-
tour Unit. In order to assist the visualization, for images shown
at positions a2, a4, a6, b1, b2, b3, b4, b6 and c1, c3, c6 the win-
ner kernels for all the tiles are represented by a one-pixel-wide
edge along the line where the light and the dark regions of
the respective binary kernel meet. Note that this substitution
is not part of the proposed method and is just used here to
facilitate the visualization, as well as, the comprehension of
the produced outcomes. On left part of Fig. 4, i.e., columns
1, 2, 3 and 4, a1 and a3 are input images, a2 and a4 are
the respective unfiltered Fine scales (where every tile has
a winner), b1,b3 and b2,b4, depict the results from the
Stage-1 filtering process over the Middle-Small scales, and
the Fine scales, respectively. The final salient contours repre-
sentations for input images a1 and a3 -produced after the
Stage-2 filtering- are depicted in c1 and c3. To give a sense
of the composite information that the descriptor integrates,
images at positions c2 and c4 show the average colors per
tile at the locations of the salient contours. For illustration
reasons colors of the non-salient parts are not displayed. On
the right part of Fig. 4 we provide additional results of the
located salient contours for input images of varying depictions
in terms of clutter, perspective, overlapping texture, dynamic
range etc. At this point it is worth mentioning that each tile
of the final Contour Unit output, despite of being classified as
contour or non-contour, is accompanied by its confidence score
and is participating in the final representation accordingly.
Thus, even though the strength of the confidence score of the
located salient contours is not visible in the visualizations of
Fig. 4, stronger edges have a bigger impact on the formation
of the final image descriptor, compared to the contours of
week edges such as those produced by the textured areas or
non-salient parts.

In order to showcase the adaptability of the thresholding
method to the specifics of a depiction, we additionally pre-
pared visualizations with manipulated images that highlight
this property.

Fig. 5 depicts the results of the final contour representation
starting with a low-contrast image a1 depicting soft clouds.
The method assesses the overall information and produces the
contours shown in a2. Next, we place a prominent object
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Fig. 4. Visualized results of the different stages of the Contour Unit. Left side; a1, a3 are input (images taken from COREL-1K), a2, a4 are unfiltered Fine
scales, b1, b2 and c1, c2 are stage-1 filtered results of the Small/Middle, t and the Fine scales, c1 and c2 are the final contour representation and c2, c3
are visualized results of extracted colors at contours’ location. Right Side; additional input images (a5, b5, c5) and their respective contours representations
(a6, b6, c6).

Fig. 5. Showcasing the adaptability of contours’ extraction: placing a
prominent object (b1, c1, b3, c3) over a low-contrast image (a1) and over
a textured image (a3). Columns 2 and 4 depict the respective Contour Unit
outputs .

over the initial image. The method re-evaluates the saliency
and eliminates all the cloud contours, classifying them as
background to the main theme, which is clearly the flying
elephant. In the third case-study c1, we moved the elephant
away from the parts of the image that were contours in the
original depiction. As shown in c2, the method adapts to the
changed spatial distribution of contours and as a result of this
some originally extracted contours re-appear.

Additionally, depiction and results in Fig. 5 columns 3 and 4
highlight the adaptability of the method over textured images.
In the empty landscape of image a3, the contours represent the

textured grass and fence areas, since nothing else is happening.
As soon as we place a small-sized prominent object e.g., b3,
much of the texture is filtered out, b4. When we scale the
object up, c3, and despite the fact that we place the object
at a distance from the most textured part of the depiction, the
saliency is re-evaluated and the textured parts are significantly
filtered out.

Edge Grouping: This is the final step of the Contour Unit
(Fig. 1 – 1.5 Edge Grouping) process. In this step, the method
aims to further quantize the edge orientation, and group the
edges according to their respective super-orientations (refer to
Fig. 2). Thus, by the end of the contour extraction process
every tile of the filtered Fine scale is annotated with the
following properties:

(i) its spatial position in the image: [1, 3600] ∈ Z;
(ii) its confidence value: [0, 1] ∈ R;

(iii) the super-orientation of the winner kernel: [0o, 45o, 90o,
135o], and

(iv) an index value [1 or 0] to indicate whether it has been
classified as contour or not.

B. Color Unit

Color information is incorporated in the proposed image
descriptor utilizing the color extraction unit as proposed by
[18]. The graphical abstract of the Color Unit is shown in
Fig. 6.

Average Color per Tile: For each tile of the Fine scale
we compute the mean RGB color of its pixels and transform
it to the HSV color space.

Fuzzy Color Histogram: At the first stage, the employed
fuzzy system generates a fuzzy-linking histogram that uses the
three HSV channels of a given tile as inputs to form a 10-bin



IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017 10

Fig. 6. Graphical abstract of the Color Unit.

histogram as output. Each bin represents a preset color: (0)
White, (1) Gray, (2) Black, (3) Red, (4) Orange, (5) Yellow,
(6) Green, (7) Cyan, (8) Blue and (9) Magenta.

Channel H is divided into eight fuzzy areas (Fig. 6 2.2 – 1st
stage Fuzzy System) defined as follows: (0) Red to Orange,
(1) Orange, (2) Yellow, (3) Green, (4) Cyan, (5) Blue, (6)
Magenta and (7) Magenta to Red. For more details concerning
the boundaries and the shaping of the membership functions
we refer the reader to [18].

Channel S is divided into two fuzzy areas (0, 1) and Channel
V, is divided into three areas (0, 1, 2). S values that fall in
the first area link to a non-color output, black, grey or white,
depending on the activation happening for channel V (0, 1,
and 2 respectively). S values that fall in the second area link
to varying color outputs depending on the activation of H , as
long as V is not in its first area. If V falls in the first fuzzy
area the output in this case is black, independently from the
other input values. For more details regarding the fuzzy rules
used to produce the crisp outputs, the reader is refered to [57].

At the second stage of the fuzzy-linking system, the method
produces a 24-bin histogram as output. Each bin represents
a preset color as follows: (0) White, (1) Grey, (2) Black,
(3) Light Red, (4) Red, (5) Dark Red, (6) Light Orange, (7)
Orange, (8) Dark Orange, (9) Light Yellow, (10) Yellow, (11)
Dark Yellow, (12) Light Green, (13) Green, (14) Dark Green,
(15) Light Cyan, (16) Cyan, (17) Dark Cyan, (18) Light Blue,
(19) Blue, (20) Dark Blue, (21) Light Magenta, (22) Magenta,
and (23) Dark Magenta.

The second stage essentially extends the output produced
during the first-stage; by assigning three different shades to
each original color from the 10-bin pallet. To define the
different shades (Light Color, Color, and Dark Color) a second
fuzzy system is employed that uses the values of S and V as
inputs.

Both Channels S and V are divided into two fuzzy regions
(Fig. 6 2.2 – 2nd stage Fuzzy System). For values of V that
fall in the first fuzzy area, and independently of S, the original
color (from the 10-bin histogram) is assigned to the respective
Dark Color (in the 24-bins histogram). The S values from the
other hand suggests whether the assignment of the original

color is assigned to Light Color or remains the same in the
final 24-bins palette. Note that since the first three bins are
already shades of Grey (White, Grey, and Black) their values
are transferred directly to the final 24-bins histogram.

C. Forming the Descriptor

The final descriptor is formed by combining the information
extracted both from the Contour and the Color Unit. The
output from the Color Unit is a 24-bins color for each tile.
This histogram is multiplied (weighted) by its associated
confidence score computed by the Contour Unit and added
to the respective super-orientation bin (0o, 45o, 90o or 135o)
of the final descriptor if it was classified as contour, or to
the fifth NoN bin if it was classified as non-contour. Fig. 7
illustrates the 5× 24 = 120-bins SaCoCo descriptor.

Fig. 7. The Salient Contours and Color Information Descriptor.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

For the evaluation of the retrieval performance of the
proposed SaCoCo descriptor, experiments were conducted on
seven different benchmarking datasets. Table I summarizes the
main attributes from each dataset along with the query mode
employed for experimentation purposes.

The proposed descriptor was compared to 13 global-feature
descriptors from the literature. The choice of the descriptors
used for experimentation was primarily based on their re-
ported performance and overall popularity. Additionally, the
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TABLE I
DATABASES USED FOR THE EVALUATION WITH, NUMBER OF IMAGES IN

THE DATABASE, NUMBER OF QUERY IMAGES USED, AVERAGE NUMBER OF
RELEVANT IMAGES PER QUERY, AND HOW THE QUERIES ARE EVALUATED.

Name Size\Queries Ground
Truth

Query mode

UCID [58] 1338\262 3.45 query-in-
groundTruth

Holidays [53] 1491\500 2.98 query-in-
groundTruth

UkBench [59] 10200\250 4 query-in-
groundTruth

COREL-1K [60] 1000\1000 100 query-in-
groundTruth

ZuBuD [61] 1005\115 5 queries & dataset
are disjoint

COREL-10K [62] 10000\10000 100 query-in-
groundTruth

GHIM-10K [63] 10000\10000 500 query-in-
groundTruth

chosen descriptors form a versatile collection of descriptors
that allowed us to compare our methodology against many
different dimensions, such as, the type of information they
extract (color, texture, and spatial distribution) compactness,
and efficiency. Specifically, for the purposes of our experi-
mentation we compared against: CEDD [18], JCD [64], SCD
[27], CLD [27], RGB Hist. [2], Opponent Histogram, Auto-
Color Correlograms, CENTRIST [24], Spatial CENTRIST
[24], PHOG [22], EHD [20], LBP [21] and RILBP [21]. All
of which are explained in detail in Section II.

Additionally, experiments were conducted using the local-
features descriptors SURF and SIFT with two aggregation
methods VLAD (16 and 64) and BOVW + WS (512, 2048).
BOVW stands for Bag of Visual Words, WS for Weighting
Scheme, and VLAD stands for Vector of Locally Aggregated
Descriptors [40]. The codebooks, in both cases, were com-
puted by randomly forwarding 10% of the extracted features
to the k-means classifier.

All descriptors (including the proposed one) were re-
implemented as part of the LIRE library [65] and can be used
under the GNU GPL license.

B. Experimental Results

a) Results on Benchmarking Datasets: Table II presents
the Mean Average Precision (MAP) [66] scores for each
descriptor per collection, while the last column shows the
average MAP scores over all collections. The NS score [59] is
also reported on the UkBench dataset, as it is the performance
measure usually reported for this dataset. In general, we
observed that the composite descriptors (i.e., descriptors based
on both color and texture image properties) perform steadily
better than the rest, achieving in all cases high MAP scores.

With regards to the color descriptors we observed that
these performed reasonably well. In contrast, the texture-based
descriptors reported a low performance in all cases with the
only exception the ones that make use of spacial information.
Especially when evaluated on the ZuBuD collection. After
observing the collection we noted that these images are all
depicting buildings whose main distinctive feature is the color

they are painted. Moreover, the fact that the queries in this
collection are of lower resolution forces descriptors, that
construct their vector as a histogram of all pixels in the image,
to completely fail without normalization.

We observed that our SaCoCo descriptor performs ro-
bustly over all collections reporting the highest average MAP
score of 0.5636. SaCoCo is the best performing descriptor
in 5 out of 7 datasets (UCID, Holidays, COREL-1K,
COREL-10K and GHIM-10K) and the second best descrip-
tor, with a slight non-significant difference from the first, in
the rest of the collections (UkBench and ZuBuD).

Table III reports the experimental performance of the SURF
and SIFT descriptors on 5 image collections. Note that this
table focuses on the best performing setups for each case
(VLAD 16/64 and BOVW 512/2048 + best performing weight-
ing scheme). SaCoCo outperforms simple SURF and SIFT
implementations for all collections.

Recent literature contains several sophisticated methods
and algorithms that outperform the retrieval accuracy of the
proposed descriptor. Table IV presents a comparison of dif-
ferent image retrieval proposals that adopt large scale visual
vocabularies and deep learning-based methods on the Holidays
database. More extensive evaluation results of the state-of-the-
art methods on this database are reported in [42]. As one can
easily observe, even when compared with these methods, the
performance of SaCoCo is competitive comparable. Moreover,
the proposed descriptor is a plug-n-play method, which can
be adopted for description and retrieval without any prior
initialization or training. The foremost advantages of SaCoCo
is the low cost of the single-feature space computations along
with the fact that indexing one image is independent of the
type or the total number of images in a collection.

b) Large-scale Experiments: In order to test the scal-
ability of our proposed method we incorporated a large
scale image database as distractors in the retrieval database,
similarly to common practice [71], [28], [72], [73]. This
practice allowed us to evaluate the scalability of our method,
overcoming the lack of a publicly available large dataset
with an assigned ground truth for CBIR. Thus, we gradually
populated the original datasets with fractions of randomly
selected images (i.e., distractors) from the MIRFLICKR-1M
collection [74].

The evaluation of a descriptor is based on the retrieved
ranked list of images per query, compared to the initial
collection’s ground truth. This means that retrieved images
that are part of the distractors are considered false results by
default.

Table V reports the MAP evaluations of SaCoCo, ACC,
CEDD, and RGB Histogram for 10, 000, 100, 000 and
1, 000, 000 distractors and the percentage of performance
degradation compared to the ones observed without distractors
(Table II) according to the same metric. Experiments were
conducted on 5 image collections.

The results indicate that SaCoCo manages to perform sat-
isfactorily in these large scale setups compared against to the
rest of the descriptors used for evaluation. Percentage-wise
only ACC shows a smaller degradation than SaCoCo, possibly
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TABLE II
RETRIEVAL SCORE PER IMAGE COLLECTION AND AVERAGE SCORE OVER ALL COLLECTIONS. BOLD FONTS INDICATE THE TOP FOUR RESULTS AND

UNDERLINED FONTS THE BEST PERFORMANCE OVER ALL DESCRIPTORS.

Descriptor UCID Holidays UkBench COREL-1K ZuBuD COREL-10K GHIM-10k Avg
MAP MAP MAP NS MAP MAP MAP MAP MAP

SaCoCo 0.7204 0.7616 0.8662 3.336 0.5414 0.7253 0.1760 0.1543 0.5636
CEDD 0.6740 0.7263 0.8055 3.068 0.5040 0.7226 0.1407 0.1439 0.5310
JCD 0.6945 0.7351 0.8480 3.248 0.5140 0.7263 0.1598 0.1434 0.5459
SCD 0.4958 0.5369 0.4676 1.660 0.3186 0.3508 0.0793 0.0471 0.3280
CLD 0.5531 0.6395 0.6679 2.524 0.4480 0.5851 0.1121 0.0896 0.4422
RGB Hist 0.5871 0.6558 0.7385 2.760 0.4650 0.5868 0.1373 0.0903 0.4658
OppHist 0.5900 0.6583 0.7352 2.752 0.4614 0.5809 0.1173 0.0945 0.4625
ACC 0.7083 0.7557 0.8866 3.408 0.4706 0.5044 0.1647 0.0993 0.5128
CENTRIST 0.5595 0.6046 0.5640 2.076 0.4401 0.0293 0.1156 0.1046 0.3454
Sp. CENTRIST 0.6393 0.6738 0.7114 2.732 0.4769 0.1052 0.1558 0.1303 0.4132
PHOG 0.5369 0.6037 0.5077 1.924 0.3770 0.4416 0.1023 0.1154 0.3835
EHD 0.5019 0.5551 0.4832 1.804 0.3454 0.3819 0.1016 0.0793 0.3498
LBP 0.5325 0.5575 0.5302 1.964 0.3699 0.1321 0.0955 0.0810 0.3284
RILBP 0.4910 0.5067 0.4134 1.528 0.3502 0.0550 0.0639 0.0608 0.2773

TABLE III
MAP EVALUATIONS FOR SURF AND SIFT. THE LETTER V INDICATES VLAD FOLLOWED BY THE SIZE OF THE CODEBOOK, B INDICATES BOVW

FOLLOWED BY THE SIZE OF THE CODEBOOK AND THE WEIGHTING SCHEME.

UCID Holidays UkBench COREL-1K ZuBuD
SURF V.64 0.6441 V.16 0.7169 V.16 0.6681 V.64 0.437 V.64 0.6922

B.2048 (nnc) 0.5852 B.512 (nnc) 0.6777 B.512 (nnc) 0.6711 B.2048 (nnc) 0.3801 B.2048 (nnc) 0.6131
SIFT V.64 0.6433 V.64 0.7581 V.64 0.8047 V.64 0.4489 V.64 0.7582

B.2048 (nnc) 0.6085 B.512 (nnc) 0.6914 B.512 (nnc) 0.6847 B.512 (lnn) 0.3756 B.2048 (nnc) 0.624

TABLE IV
HOLIDAYS IMAGE COLLECTION - PERFORMANCE COMPARISON TO

STATE-OF-THE-ART METHODS.

Descriptor MAP Descriptor MAP
Zheng Et al. (PPS) [28] 0.852 Local CoMo [3] 0.811
CNNaug-ss [67] 0.843 MOP-CNN [68] 0.802
LF - GoogLeNet [69] 0.840 Zheng Et al. [28] 0.796
LF - OxfordNet [69] 0.838 AlexNet-conv3 [70] 0.793
LF (VLAD) - GoogLeNet [69] 0.836 Mikulı́k Et al. [33] 0.742
Xinchao Li Et al. [36] 0.825 PhilippNet [70] 0.741
Tolias Et al. [34] 0.822 AlexNet-conv2 [70] 0.689
LF (VLAD) - OxfordNet [69] 0.816

due to the fact that it has double the vector length, however, in
terms of the average MAP score, SaCoCo always outperforms.

We note also that all descriptors suffer from a high per-
centage of degradation in the COREL-1K database which is
caused by the fact that the employed distractors have similar
images for some categories of the original collection.

C. Runtime and Memory Performance
To calculate the runtime and memory performance of the

proposed descriptor, a set of experiments were conducted on
an Intel Core i7-3770K CPU. The first 10, 000 images
from the MIRFLICKR-1M dataset were employed as bench-
marking database. In order to calculate an average extraction
time per image, images need to be of same dimensions,
since resolution significantly affects most of the descriptors
extraction time. The size of 1024× 768 pixels was chosen as
it serves for a good benchmark resolution for most real-life
scenarios. Table VI summarizes the main properties of the
proposed method along with the global descriptors from the
state-of-the-art that were re-implemented in order to ensure
fair comparison.

Extraction of SaCoCo descriptor is fast and scales linearly
so for extraction of n descriptors one needs o(n) time. Experi-
ments with the Java implementation of SaCoCo reported that
in a single thread extraction of a single image the descriptor
requires 68.43 ms on average. Using eight threads the time is
reduced to an average of 18.31 ms per image. The extraction
time of the proposed descriptor is of the same order of
magnitude as, though smaller than, the calculation time of
CEDD. At the same time, the average extraction time of all
listed global descriptors is equal to 79.36 ms, higher than
the calculation time of SaCoCo. It is worth noting that the
proposed descriptor is the only global feature that incorporates,
during the calculation procedure, color, texture and spatial
information.

Memory consumption is constant for extraction and scales
linearly for storage. For the single threaded extraction memory
consumption peaks at 182 MB with a drop to below 16
MB after garbage collection. For the extraction with eight
threads memory consumption peaks at 624 MB, but after
garbage collection drops to 100 MB. This seems considerably
higher, but derives from the approach of holding up to 200
uncompressed images in the in-memory queue to minimize
disk access.

As one can easily observe, the proposed descriptor‘s search-
ing time is slightly higher than the time of descriptors of
similar or even smaller vector lengths. Although fluctuation
is not significant, it can be justified. Most of the listed
features adopt Euclidean or Tanimoto distances as divergence
methods. On the other hand, the proposed approach uses
Jensen-Shannon [75] divergence method. This approach is
based on the Kullbac-Leibler divergence, with some notable
(and useful) differences, including that it is symmetric and
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TABLE V
LARGE-SCALE EXPERIMENTS: MAP EVALUATIONS AND % DEGRADATION COMPARED TO ORIGINAL SCORE, PER DESCRIPTOR.

UCID Holidays UkBench COREL-1K ZuBuD Avg
SaCoCo 10k 0.6792 0.7207 0.8597 0.2265 0.7102 0.6393

5.72% 5.37% 0.75% 58.16% 2.08%
ACC 10k 0.6789 0.7439 0.8825 0.2554 0.4948 0.6111

4.15% 1.56% 0.46% 45.73% 1.90%
CEDD 10k 0.6110 0.6723 0.7906 0.1825 0.7018 0.5916

9.35% 7.43% 1.85% 63.79% 2.88%
RGB Hist 10k 0.5326 0.6084 0.7269 0.1561 0.5607 0.5169

9.28% 7.23% 1.57% 66.43% 4.45%

SaCoCo 100k 0.6132 0.6741 0.8332 0.1028 0.6783 0.5803
14.88% 11.49% 3.81% 81.01% 6.48%

ACC 100k 0.6360 0.7198 0.8672 0.1334 0.4578 0.5628
10.21% 4.75% 2.19% 71.65% 9.24%

CEDD 100k 0.5327 0.6127 0.7495 0.0659 0.6635 0.5249
20.96% 15.64% 6.95% 86.92% 8.18%

RGB Hist 100k 0.4857 0.5519 0.6865 0.0613 0.5061 0.4583
17.27% 15.84% 7.04% 86.82% 13.75%

SaCoCo 1M 0.5493 0.6235 0.7879 0.0424 0.6294 0.5265
24% 18% 9% 92% 13%

ACC 1M 0.5763 0.6762 0.8336 0.0648 0.3706 0.5043
19% 11% 6% 86% 27%

CEDD 1M 0.4603 0.5528 0.6782 0.0262 0.5878 0.4611
32% 24% 16% 95% 19%

RGB Hist 1M 0.4524 0.4973 0.6135 0.0253 0.4023 0.3982
23% 24% 17% 95% 31%

TABLE VI
SUMMARY OF THE PROPERTIES OF THE DESCRIPTORS WITH, THE TYPE OF
INFORMATION THEY SUPPORT (C:COLOR, T:TEXTURE, S:SPATIAL), THEIR
VECTOR LENGTH, THE EXTRACTION TIME IN MS PER IMAGE AND SEARCH

TIME IN MS , PER IMAGE (USING A SINGLE THREAD).

Descriptor C T S Vector Extraction Search
length time time

SaCoCo x x x 120-bin 68.43 15.96
CEDD x x 144-bin 68.51 12.54
JCD x x 168-bin 143.78 12.33
SCD x 64-bin 23.70 12.80
CLD x x 192-bin 15.01 11.36
RGB Hist x 64-bin 36.47 12.74
OppHist x 64-bin 41.43 12.18
ACC x x 256-bin 255.70 26.78
CENTRIST x 256-bin 50.43 14.03
Sp. CENTRIST x x 7,936-bin 188.58 129.34
PHOG x x 630-bin 181.44 12.51
EHD x x 80-bin 44.18 11.75
LBP x 256-bin 26.29 11.95
RILBP x 36-bin 65.35 11.01

it is always a finite value. Even with a different and a more
computationally demanding divergence method, the searching
time of the proposed descriptor is competitive comparable and
significantly lower that the one of ACC and Sp. CENTRIST.

Finally, it is important to compare the runtime and mem-
ory performance of the proposed descriptor against deep
learning-based state of the art methods. Using Keras
and Tensorflow to extract features with the pre-trained
VGG-16 [76] model provided by Keras on the same computer
took 354.17 ms per image and used up around 512 MB
of memory throughout multithreaded, CPU-based extraction.
Using the InceptionResNetV2 model [77] provided by
Keras, feature extraction requires, on the same computer and
dataset, on average 270.15 ms and uses up around 900 MB of

TABLE VII
COMPARING THE PROPERTIES OF THE PROPOSED DESCRIPTOR AGAINST

DEEP-LEARNING STATE OF THE ART METHODS (USING
MULTITHREADING).

Desctiptor Vector Length Extraction Time Size
SaCoCo 120 18.31 240B
VGG-16 25088 354.17 98KB
InceptionResNetV2 38400 270.15 150KB

memory throughout multithreaded, CPU-based extraction.
SaCoCo features are also considerably smaller than the

output of the above neural networks with 120 dimensional
vectors quantized to 16-bit integers using up 240 bytes. In
contrast to that, descriptors for the neural networks use 32-
bit floating point numbers and have 38400 dimensions for
InceptionResNetV2’s layer before the last one (150 kilobytes)
and 25088 dimensions for VGG-16 (98 kilobytes). Table VII
summarizes the properties of the proposed descriptor against
Deep-Learning based state of the art approaches.

V. CONCLUSIONS AND FUTURE EXTENSIONS

This paper presents a fully unsupervised, parameter-free,
adaptive method, that extracts contour and color information
to represent images. It segments the image into salient and
non-salient parts, while all information is weighted and affects
the final representation accordingly.

Both the contour information and the color information
are effectively quantized in the final descriptor. The color
information of each image part is softly assigned to a 24-
hues palette, thus normalizing light hue variations and lighting
conditions. The contours’ orientation is initially searched for
by 15 degrees increments and quantized into four super groups,
normalizing and tolerating shape distortions caused from the
initial image scaling and rotations up to 45 degrees.
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Overall, the experimental evaluation showed that SaCoCo is
well suited for CBIR. The descriptor managed to outperform
all global descriptors from the literature, as well as, simple
SURF and SIFT implementations when evaluated on a wide
variety of diverse datasets that varied both in theme and
query to database relevance assumption. Furthermore, SaCoCo
showed enough evidence that can compactly and efficiently
describe images with a vector representation of 120-bins that
passed the test of scalability.

Experimental evaluation indicates that, although SaCoCo
does not supersede all of the other approaches, it brings a new
approach for domains, where global, unsupervised features
are required. It is ready to use, no training or parameter
fitting is needed, but still reports significantly good retrieval
results. Runtime performance and memory footprint make it
usable for embedded systems like smart cameras and robots.
As outlined in Section IV-C SaCoCo descriptors are more
than 400 times smaller than those built on VGG-16 and 640
times smaller than those extracted with the InceptionResNetV2
model. The compactness of the descriptor make it a good
fit for scenarios with large amounts of data, like retrieval of
video streams. Moreover, the compact descriptors can easily
fit into memory for large amounts of data leading to fast online
retrieval. As shown with the runtime experiment indexing is
faster by an order of magnitude than the two investigated
CNNs and – by design – SaCoCo does not need transfer
learning, training or parameter fitting. This makes SaCoCo an
interesting alternative for many small domains with limited
amount of training data, expertise or computational power.

Future work mainly plans to address different aspect ratios
for the spatial grid partitioning, and more domain specific
datasets, such as, portraits or medical images. In addition, and
since the approach is parallel-execution friendly by design, we
plan to explore a GPU and/or FPGA implementation strategy
to further accelerate the indexing procedure.

SaCoCo has been included in the LIRE library [65] and can
be used under the GNU GPL license for testing and evaluation.
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