
Neapolis University

HEPHAESTUS Repository http://hephaestus.nup.ac.cy

School of Information Sciences Conference papers

2020-06-17

þÿ ��I�o�T� �D�e�v�i�c�e� �F�i�r�m�w�a�r�e� �U�p�d�a�t�e� �o�v�e�r

þÿ�L�o�R�a�:� �T�h�e� �B�l�o�c�k�c�h�a�i�n� �S�o�l�u�t�i�o�n �

Anastasiou, A.

IEEE

http://hdl.handle.net/11728/11653

Downloaded from HEPHAESTUS Repository, Neapolis University institutional repository

IoT Device Firmware Update over LoRa: The
Blockchain Solution

A. Anastasiou ∗, P. Christodoulou∗, K. Christodoulou†, V. Vassiliou ‡ and Z. Zinonos∗
∗Department of Computer Science, Intelligent Systems Lab, Neapolis University Pafos, Cyprus

†Institute For the Future (IFF), University of Nicosia, Cyprus
‡Department of Computer Science, University of Cyprus, Cyprus

Abstract—More and more Internet of Things (IoT) devices
are deployed around the world, due to the convenience and
extra functionality they enable. This growth, while great for
the industry as a whole, has come at a price with respect to
ensuring and maintaining security and privacy. Having that in
mind, one of the most common solutions to the IoT security
problem is to update the devices frequently. Recently, LoRa
Alliance has released a new specification (FUOTA) on how to
perform firmware updates using LoRa technology. In this paper,
we propose a blockchain-based framework to securely update
the firmware of the IoT devices using the LoRa communication
protocol. As a first step, we perform an evaluation of the firmware
update procedure using different network sizes and different
firmware sizes. The evaluation shows that there is a need to use
more gateways that will collaborate to increase the reliability and
the performance of the firmware update process.

Index Terms—IoT, Firmware Update, Blockchain, LoRa

I. INTRODUCTION

Every day thousands of new end-devices are connected to

the IoT world, from smart refrigerators, smart watches, smart

door locks, medical sensors, to fitness trackers and smart

security systems. IoT has being integrated in many sectors

such as, transportation, health-care, smart cities, agriculture,

manufacturing and environmental monitoring systems.

The increasing popularity of the Internet of Things (IoT)

has made IoT devices a powerful amplifying platform for

cyber-attacks. Numerous vulnerabilities and attacks have been

reported affecting IoT devices. The 2019 Ponemon Institute

Study on the Cyber Resilient Organization [1] discusses that

the number of breaches due to unsecured connected devices

now accounts for 26% of all security breaches up from last

years figure of 15%. The actual number may actually be

greater, as most organizations are not aware of every unsecured

IoT device, application, or third party platform they are using.

In the Mirai attack, criminals found a way to perform the

largest DDoS attack ever known. Authors in [2] have con-

cluded that the main reason for the attack being so successful,

was the factory credentials that were left unchanged along with

the inadequate firmware updates. Another example showing

the importance of firmware update was observed within the

Fiat Chrysler Group. Attackers gained access to the vehicles

via the entertainment system and subsequently to the rest of the

control software, that way obtaining control to crucial systems

Dr. Vassiliou is also with the RISE - Research Center on Interactive
Media, Smart Systems and Emerging Technologies, Nicosia, Cyprus

of the vehicle. The Fiat Chrysler Group had to recall 1.4M

vehicles in the US and was forced to individually patch their

systems with an updated version of the firmware.

Several architectural IoT factors should be taken into ac-

count when designing and developing secure IoT deploy-

ments. Some advocate the use of hardened border routers,

or gateways; others suggest segragating IoT networks; while

others propose methods for recognizing anomalies within the

network [3]. We believe, like many other experts, that the

most sensitive issue concerning IoT devices security is the

process of updating the firmware in a way that the integrity

of the firmware is validated. Without adopting any security

mechanism, it is possible that the firmware update is written

over the already installed one, without any revision. In cases

of a malfunction during the update potential for a rollback is

limited. The fact that the majority of these devices are expected

to operate for years, probably performing different tasks over

time, makes the update of the devices an important task for

the long term viability of the device.

In this paper, we use two state-of-the art technologies to

support firmware update procedures for IoT devices. More

specifically, we utilize a Blockchain smart contract to ef-

fectively support IoT devices firmware updates by verifying

the authenticity and integrity of the firmware. At the same

time, we use the FUOTA framework and we evaluate the

performance of LoRa technology during the firmware update

procedure.

Blockchain (BC) is the technology used in the world’s first

cryptocurrency namely, bitcoin (BTC). BTC was first launched

in 2008 and is considered an immutable electronic distributed

ledger. By many it is considered the apogee regarding privacy

and security in a decentralized system. Blockchain technology

was designed for securing the transactions of the world’s most

recognized cryptocurrency.

On the other hand, LoRa belongs to the Low-Power Wide

Area Networks (LPWAN) that are wireless technologies with

specific characteristics such as large coverage areas, low

bandwidth, possibly small packet and application layer data

sizes and long battery life operation. LPWAN is the wireless

communication technology that supports the requirements of

IoT applications. In a nutshell, these requirements contain

conditions related to low data rate, long-range, low energy

consumption, and low cost. In this work, we will use LoRa

to multicast the firmware update to all interconnected IoT

404

2020 16th International Conference on Distributed Computing in Sensor Systems (DCOSS)

2325-2944/20/$31.00 ©2020 IEEE
DOI 10.1109/DCOSS49796.2020.00070

Authorized licensed use limited to: Carleton University. Downloaded on September 21,2020 at 08:32:43 UTC from IEEE Xplore. Restrictions apply.

devices.

The remainder of the paper is organized as follows. Section

II briefly presents the related work about firmware updates and

provides background information explaining the functionality

of Blockchain and Lora. The challenges in updating IoT

devices are discussed in Section II. In Section III the proposed

architecture with the different components is analysed. In

Section IV, authors evaluate the proposed solution and present

the collected results. Finally, the conclusions of the study are

summarized in Section V.

II. BACKGROUND INFORMATION

Nowadays, different approaches have been proposed for

updating IoT firmware of devices. Mostly, such approaches

aim to maintain a balance between time security, system

stability, and transmission reliability. This section focuses only

on Blockchain-based proposed approaches. In addition, this

section provides details on LoRa’s functionality.

A. Blockchain

Blockchain has numerous adoptions in a number of non-

monetary applications. This includes applications like a de-

centralized IoT parking application [4] [5], energy auction

applications [6], smart city applications [7] [8] and others that

make BC an attractive feature for distributing firmware updates

to the IoT world.

Over the years a number of solutions regarding automatic

firmware updates has been proposed to satisfy the fast growing

IoT ecosystem. BC as a firmware update distribution approach

was proposed by Lee et al. [9], where authors used a BC

network to distribute firmware status to the devices along with

peer-to-peer (P2P) delivery for the binary part. Their proposal

also supports firmware integrity checking for extra safety.

In [10], authors proposed a firmware update scheme based

on a decentralized smart contract designed for autonomous

vehicles (AVs). The smart contract was used to ensure the

authenticity and integrity of firmware updates, and more im-

portantly to manage the reputation values of AVs that transfer

the new updates to other AVs.

Another proposal describing a BC-based security update

mechanism in IoT was presented in Steger et al. [11]. Authors

proposed this mechanism as a solution in the automotive

industry. By its fundamental design BC records a block of

transactions in the chain using a cryptographic hash that is

linked with the previous block that also contains time-stamps,

other transactions and additional data. Even though their

proposal was mainly used for the automotive industry, if we

take into consideration the number of vehicles that participated

using this approach, we can consider that it translates to IoT

specific devices as well.

Dorri et al. [12] identifies numerous issues pointing that BC

is not an off-the-shelf solution to IoT. There are several issues

that need to be taken into consideration e.g., the high demands

for resources, especially when using the Proof-of-Work con-

sensus algorihtm, or scalability requirements amongst miners,

and the high delays resulting from the deployment of strate-

gies to prevent double spending. To solve these challenges,

authors developed a Lightweight Scalable Blockchain (LSB).

The philosophy of LSB is quite simple, the system replaces

the resource intensive consensus algorithm with a timing-

based value, and divides the network into manageable public

blockchain clusters.

In [13] authors are focused on current research work that

is based on IoT firmware updates which aims to highlight

issues related with security of firmware updates. The study

specifically focuses on the security challenges that face low-

end IoT devices and LPWAN.

In [14] authors present a solution on how to secure the

firmware updates on IoT gateway devices, that aims to assure

the proof of origin, integrity and confidentiality in transit of

the firmware image.

Finally, in [15] authors outline a framework that utilizes

Blockchain technology to securely check the firmware version,

validate the correctness of the firmware and download the

latest firmware for the various embedded devices.

B. LoRa

LoRaWAN [16] has three different classes of end-devices

to address the various needs of applications:

• Class-A: The end-devices allow bi-directional communi-

cations whereby each end-device’s uplink transmission is

followed by two short downlink receive windows. The

transmission slot scheduled by the end-device is based

on its own communication needs with a small variation

based on a random time basis.

• Class-B: The end-devices of Class-B have a higher num-

ber of received slots. In contrast to Class-A , Class-B

devices open extra receive windows at scheduled times.

In order for the end-device to open a receive window at a

scheduled time it uses a time synchronized Beacon from

the gateway. This allows the server to know when the

end-device is listening.

• Class-C: The end-devices of Class-C an almost con-

tinuously open receiving windows mechanism; they are

closed only when transmitting. Such devices consume

more power to operate compared to Class-A and Class-B,

however they offer the lowest server latency to end-device

communication.

LoRa allows the configuration of four critical parameters,

Bandwidth (BW), Spreading Factor (SF), Coding Rate (CR)

and Transmit Power (TP).

• Bandwidth (BW): The bandwidth is the width of the

transmitted signal. It can only be chosen among three

options: 125kHz, 250kHz or 500kHz. For a long range

transmission a 125kHz BW must be configured and for

a fast transmission a 500kHz BW must be configured.

• Spreading Factor (SF): The Spreading Factor refers to the

value which determines how spread the chirp would be. In

LoRaWAN networks, SF7- SF12 are used. The selection

of SF defines also the data rate. Table I presents the

405

Authorized licensed use limited to: Carleton University. Downloaded on September 21,2020 at 08:32:43 UTC from IEEE Xplore. Restrictions apply.

chirp packet length based on the SF parameter. Modifying

this parameter provides a trade-off between increasing the

communication distance and decreasing the data transfer

rate.

• Coding Rate (CR): The Code Rate error correction code

its added to a packet before transmission. To calculate

the CR, the following formula is used:

CR =
4

4 + n
, n = 1, 2, 3, 4 (1)

• Transmission Power (TP): The Transmission Power refers

to the amount of power used to transmit a chirp. The

higher the transmission power is the higher the power

consumption is also. For example, for a transmission

power of 20dBm the power consumption is 412.5mW.

TABLE I: Data Rates

Data Spreading Bandwidth (kHz) Max App
Rate (DR) Factor (SF) Payload (bytes)

0 12 125 51
1 11 125 51
2 10 125 51
3 9 125 115
4 8 125 222
5 7 125 222

The LoRa Alliance has published three Firmware Updates

Over The Air (FUOTA) LoRaWAN application specifications.

These specifications are related to time synchronization, the

sending of messages to groups of end devices and the splitting

of data files. The recommended FUOTA architecture is pre-

sented in [17]. In fact, without utilizing the new specifications

it is impossible to successfully update the firmware because

of LoRa characteristics such as the limited data rates (bits

per second), the duty cycles limitations since these networks

operate in the unlicensed spectrum. In addition, this type of

networks suffer from packet losses due to interference. In our

proposal, we utilize the recommended FUOTA architecture as

shown in the section III.

For the update procedure, we adopt the transmission of

Class-C messages. Thus, the duty cycle of the gateway can

be enhanced by using multicast Class-C messages. To achieve

multicasting, a network server is responsible to create, delete

or modify the multicast groups and guarantee that the multicast

message will be delivered to the multicast group.

C. Challenges in Updating IoT Devices

In this subsection, we identify some of the fundamentals

steps required when updating a firmware. Note that require-

ments may differ depending the device type and/or its appli-

cation. The major challenges are:

1) Authentication: The device should accept the firmware

from a trusted source.

2) Version Control: The firmware should be accepted only

if the version is suitable for the device (to prevent the

installation of outdated software).

3) Package Integrity, Complete and Error-Free Transmis-
sion: If the firmware is somehow tampered or is incom-

plete it should not be accepted by the device. After the

update package is transmitted, it has to be debugged for

any errors.

4) Operability Check: The updated firmware has to be

checked if it is working as it was intended to do.

5) Reduced User Interaction: User interaction must be

limited since this is the common source of errors.

Within the world of IoT there are various challenges con-

cerning the process of automatic firmware update. A major

challenge is the lack of a standardized approach for wide-

scale updating, for large scale IoT deployments. The challenge

emerges from the fact that devices are from many different

manufacturers, having heterogeneous ways for conducting

updates. In addition, devices are often constrained in hardware

resources with limited connectivity and reach-ability.

III. FIRMWARE UPDATE USING BLOCKCHAIN

The need for Firmware updates over the air (FUOTA) has

risen due to IoT security concerns. A number of recom-

mendations were proposed for performing embedded software

management, and more specifically firmware updates.

With FUOTA’s support, new functionalities, security up-

dates, and optimization patches can be deployed with min-

imum human intervention to embedded devices, over their

lifetime. However, supporting FUOTA over one of the most

promising IoT networking technologies, LoRaWAN, is not

a straightforward task. This is mainly due to LoRaWAN’s

limitations. LoRaWan does not provide the best channel for

bulk data transfer such as a firmware image. While the LoRa

Alliance proposed new specifications to support multicast,

fragmentation, and clock synchronization, which are essential

features to enable efficient FUOTA in LoRaWAN, we propose

an added security level to the process. With this paper we

propose the use of a smart contract that has been deployed

over a BC as an authentication and a management mechanism

for firmware updates. The proposed model is mainly based on

LoRa Alliance FUOTA Process [16]. The proposed architec-

ture is shown in Fig. 1.

Fig. 1: Proposed Architecture

406

Authorized licensed use limited to: Carleton University. Downloaded on September 21,2020 at 08:32:43 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Flow Diagram

A flow diagram (as shown in Fig.2) illustrates the process

used by FUOTA which has been enhanced with the use of a

BC to enable Blockchain Updates Over the Air (BUOTA), as

follows:

• Step 1 - Firmware Update Server (FUS): During this

step FUS creates the new compressed firmware image.

It then selects the number of fragments, redundancy and

the erasure code. The new image contains a header (at

a basic level it contains the target end-devices hard-

ware version, the current firmware version, image CRC,

compression mechanism used by the image, etc.) and a

digital signature which uses a private/public key scheme

to authenticate the image. The image is signed using the

FUS private key and creates the fragmented file. FUS

also creates the constraints that need to be sent to BC,

including nodeID, firmwareVersion, checksum, battery
level, memory size, registrationID, and status. We explain

each one of the aforementioned parameters in subsequent

sections.

• Step 2 - In this step FUS sends the generated data to the

Application Server (AS) and the constraints to the BC.

AS also negotiates with the Network Server (NS) a Class

distribution window (in our study we focus on Class-

C). Class-C distribution negotiated window parameters

include: the list of end-devices, the size of the fragment

file to send, time criticality, coding redundancy, etc. In

addition, in this paper we examine multicast distributions

so the list of end-devices is already known.

• Step 3 - In step 3, the FS configures the Class-C multicast

group using an applicative unicast downlink for all end-

devices that require an update. In the background the end-

devices have their clocks synchronized to the network’s

clock because absolute time is used to define the session

start.

• During this step NS initiates the fragmentation session

setup command. This command contains a freely assigned

descriptor such that end-devices can autonomously check

whether the received image is applicable to them in order

to know where to store it.

• Step 4 - NS sends the fragmented file to the Gateways

and the Gateway broadcasts the fragment file to end-

devices to be updated. As soon as an end-device (ED)

has received enough fragments (specified by the FUS), it

reconstructs the binary image.

• Step 5 - In this step, the ED authenticates the sender

(FUS) and the digital signature of the image by checking

the sender’s FUS public key stored in all end-devices.

This step serves as an integrity test of the firmware

upgrade image during the FUOTA process by LoRa

Alliance.

• Step 6 - ED checks the image header to verify that:

– the image is compatible with the ED hardware; and

that,

– the image is compatible with the firmware version

currently running on the end-device.

• Step 7 - ED communicates via Gateway to BC to verify

407

Authorized licensed use limited to: Carleton University. Downloaded on September 21,2020 at 08:32:43 UTC from IEEE Xplore. Restrictions apply.

the constraints. At the same time, BC matches, constraints

and sends a verification for execution.

• Step 8 - During this step the ED application marks the

firmware image as “ready”. This means that the image

will be installed by the bootloader during next reset. The

application is responsible for this as if the reboot decision

needs to happen immediately, postpone it to a later

time, or wait an input from the firmware management

command to reboot.

• Step 9 - After reboot, bootloader checks the availability

of a firmware upgrade image and finds the new one.

Bootloader checks again the CRC of the image and

decompresses the image. The decompression method

may vary, as it might happen directly in-place, and the

decompressed image will overwrite the previous firmware

image, or in a currently unused memory space. In the

first case, the update is performed transitionally, thus the

flash memory is updated per page, during this process the

page’s content that is written is verified, and the address

of the next page is written to NVM. LoRa Alliance

introduced this step to guarantee that the process will

resume where it was left at the next reset even if the end-

device crashes or power is interrupted during the update

process)

• Step 10 - Bootloader marks the firmware upgrade image

as installed and the ED sends to the BC the new status, the

installed firmware version, the installation’s timestamp as

well as a unique ID which can be used to enable roll-back.

The aforementioned data are recorded on the proposed

Smart Contract (as shown in Alg. 1).

• Step 11 - Finally, ED sends a notification to FUS as an

update status (success or failure).

The parameters that are included in the BC and smart

contract respectively are outlined below:

• nodeID, refers to the unique number of each ED.

• FirmwareVersion, contains the current firmware version

of each ED. This parameter is used to ensure that a

firmware version is applicable to a specific ED.

• Checksum, is used to verify that the MD5 hash originated

from the NS is the same as with the one to be installed

in the ED.

• Batterylevel, ensures that the ED has the necessary power

resources to undergo the specific update. The minimum

battery level is defined by the developer of the new

firmware.

• Memorysize, refers to a constraint which can ensure that

the ED has the appropriate memory size to accept the

new firmware update to avoid overloading. The memory

size of the new firmware is also defined by the developer.

• registrationID, provides a unique id to be used to enable

roll-back in case of an unsuccessful firmware update.

• Status, is used to ensure that the firmware update was

completed either successfully or unsuccessfully. BC gets

a response from the ED after a reboot.

Algorithm 1 Pseudocode for the FirmwareUpdate smart contract

1: contract FirmwareUpdate
2:
3: struct rF {nID, FM, CS, BL, MS, RID, status}
4: struct rF {nID, FM, time, status, nUUID}
5:
6: rFR ← rF[]
7: nSR ← nS[]
8: aNR ← uint[]
9: aURID ← uint[]
10: aUP ← uint[]
11:
12: function registerNewFirmware(uint _nID, string _FM,

13: string _CS, uint _BL, uint _MS)
14: if (msg.sender == contract.owner) then
15: s ← rFR.length++
16: rFR[s-1].nID ← nID
17: rFR[s-1].FM ← FM
18: rFR[s-1].CS ← CS
19: rFR[s-1].BL ← BL
20: rFR[s-1].MS ← MS
21: rFR[s-1].status ← false
22: rFR[s-1].RID ← s+10000
23: aNR.push(rFR[s-1].nID)
24: aURID.push(rFR[s-1].RID)
25: end if
26: end function
27:
28: function updateNodeStatus(uint _checkRID, bool _status)
29: if (msg.sender == contract.owner) then
30: index ← 0
31: s2 ← nSR.length++
32: for (i ← 0 to rFR.length)
33: if (rFR.RID == checkRID) then
34: index ← i
35: return index
36: end if
37: end for
38: nSR[s2-1].nID ← rFR[index].nID
39: nSR[s2-1].FM ← rFR[index].FM
40: nSR[s2-1].time ← now()
41: nSR[s2-1].nUUID ← rFR[index].RID
42: nSR[s2-1].status ← status
43: rFR[index].status ← status
44: aUP.push(nSR.nUUID)
45: end if
46: end function
47:
48: function readF irmwareV ersion(uint nID) returns (. . .)
49: index ← i
50: for (i ← 0 to rFR.length)
51: if (rFR.RID == nID) then
52: index ← i
53: return index
54: end if
55: end for

56: return (rFR[index].nID, rFR[index].FM, . . .)
57: end function
58: contract end

IV. EVALUATION

In this section, we evaluate the firmware update process

using the FUOTASim simulator [18]. A detailed description of

the simulator can be found in [19]. The metrics that were used

for the evaluation are the Packet Reception Rate (PRR), the

Total Network Energy required, the Update Time and, finally,

the Update Efficiency (nodes that were updated). The evalu-

ation was performed with aim to analyse the performance of

the firmware update process during the multicast transmission

phase using different number of end devices and different

size of firmware. Each simulation was run 1000 times with

different random seeds. In all the simulations, we used Class

C messages and one gateway node.

408

Authorized licensed use limited to: Carleton University. Downloaded on September 21,2020 at 08:32:43 UTC from IEEE Xplore. Restrictions apply.

(a) Packet Reception Rate vs Number of Nodes for Different Data Rate (b) Total Energy vs Number of Nodes for Different Data Rate

(c) Update Time vs Number of Nodes for Different Data Rate (d) Update Efficiency vs Number of Nodes for Different Data Rate

Fig. 3: Evaluation for different number of nodes and Data Rate and Firmware=50k

Furthermore, the fragment size is set to the maximum

payload supported by each data rate. Clock synchronization,

multicast session setup and fragmentation session is out of the

scope of this paper.

A. Number of Nodes Evaluation

In this subsection, we investigate how the number of nodes

in the network affects the performance of the firmware update.

For the simulations, we used a fixed size of firmware equal

to 50KB and we were changing the number of nodes and the

data rate.

Fig. 3 shows the results. We observe that as the number of

nodes is increasing the Packet Reception Rate in decreasing.

The impact of the number of nodes increment is higher for

DR5 and decreases as we move to DR0. This can be explained

due to the spreading factor used in each data rate. SF12

provides higher Packet Reception Rate comparing to SF7.

Furthermore, we observe a proportional increment of the total

network energy consumed with the increment of the number

of nodes.

Fig. 3(c) shows the total update time required for all nodes

to receive the firmware update. We observe that the update

time is proportional to the data rate and the number of nodes.

In case of DR0, due to the high airtime of spreading factor

SF=12 there is a huge increment of the update time. Based on

the evaluation, in order to update the firmware of a network

consisted of 200 nodes and using one gateway, 62 days are

required. If we use DR5, update time is reduced to 1.5 days.

In case of 100 nodes, the update time is reduced to 31 days

and 15 hours accordingly. Obviously, these update delays are

not acceptable for the majority of applications since during the

update phase the normal operation of the device is paused.

Finally, Fig. 3(d) shows the update efficiency for different

data rates and different network size. We observe that using

DR0 all nodes are updated where the number of nodes

updated when using DR5 is 68%. We conclude that the update

efficiency is not related to the number of nodes but is related

to the data rate used.

The evaluation in this subsection clearly indicates that there

is a huge trade-off between the update time, the update

409

Authorized licensed use limited to: Carleton University. Downloaded on September 21,2020 at 08:32:43 UTC from IEEE Xplore. Restrictions apply.

(a) Packet Reception Rate vs Firmware Size for DR0 and DR5 with 10 nodes. (b) Total Energy vs Firmware Size for DR0 and DR5 with 10 nodes.

(c) Update Time vs Firmware Size for DR0 and DR5 with 10 nodes. (d) Update Efficiency vs Firmware Size for DR0 and DR5 with 10 nodes.

Fig. 4: Evaluation using different firmware sizes.

efficiency, the energy consumption and the data rates used.

In order to reduce this trade-off and achieve better results

multiple gateways could be used.

B. Firmware Size Evaluation

In this subsection, we investigate how the firmware size

affects the firmware update performance. The results of the

evaluation are shown in Fig. 4.

Fig. 4(a) shows the Packet Reception Rate for DRO and

DR5 for firmware sizes of 10KB, 50KB, 100KB and 200KB.

Based on the results, we conclude that PRR is depended on

the data rate used and not on the firmware size.

In Fig. 3(b) we observe the total network energy for different

firmware sizes. When using DR0 the energy consumption

is much more higher than DR5 (32 times more). Fig. 3(c)

shows the update time for the different firmware sizes. We

observe that the update time is proportional to the firmware

size. Furthermore, comparing the update time of DR0 is again

32 times more than the update time of DR5. Both figures

indicates the same behaviour. This is explained due to the

higher airtime of SF12 and the higher number of fragments

sent in case of DRO (max payload 55 bytes vs 222 bytes of

DR0).

Finally, Fig. 4(d) shows the update efficiency for different

firmware sizes. We observe that DR0 offers 100% of update

efficiency where in case of DR5 we observe reduction of the

update efficiency as the size of the firmware increases. More

specifically, the update efficiency using DR5 is reduced from

96% for firmware size of 10k to 18% for firmware size of

200k.

Again, there is a trade-off between the metrics and the

firmware size which indicates that the use of more gateways

will be beneficial for the firmware update.

C. Blockchain Evaluation

In regards to the blockchain operation, the proposed

blockchain approach was deployed and evaluated on the

Ethereum Ropsten TestNet. The list of the executed transac-

tions can be found on the following smart contract address

0x216ae7bae3bb4150077fbd4e53904b95fdacbae5.

410

Authorized licensed use limited to: Carleton University. Downloaded on September 21,2020 at 08:32:43 UTC from IEEE Xplore. Restrictions apply.

Table II outlines the min values of the Gas Limit and Gas

Price that are required for the deployment of the smart contract

as well as for the execution of the system’s core functions.

Costs are calculated based on the current price of Ethereum1.

TABLE II: Gas limits and prices for contract deployment and

function calls.

Gas limit Gas price Cost
(Gwei) (USD)

Smart contract deployment 1,821,902 1 0.383
deployment

registerNewFirmware(. . .) 273,330 1 0.057
updateNodeStatus(. . .) 232,424 1 0.048

As it can be observed from Table II for the deployment of

the smart contract on the Ethereum blockchain 0.383 USD are

required and for executing core functionalities a max amount

of 0.057 USD is needed.

Table III outlines the execution times of the core functions.

Based on our findings it takes less than 10s to register a new

firmware update on the Blockchain and less than 8s to verify

the update of the IoT device. High execution times can be

significantly reduced when increasing functions’ Gas prices.

TABLE III: Functions’ execution time

Times (sec)
Smart contract deployment <10
registerNewFirmware(. . .) <8

updateNodeStatus(. . .) <1

V. CONCLUSION

Firmware updates fix security vulnerabilities and are con-

sidered to be an important building block in securing IoT

devices. This challenge remains in the interest of researchers

from the community that have not yet standardized the process.

In this paper, we present a firmware update procedure based on

FUOTA that utilizes blockchain to increase security during the

updating process. Since we assume the usage of LoRa tech-

nology, we performed a firmware update evaluation in order to

extract useful conclusions on the reliability and effectiveness

of the procedure using LoRa. Based on the evaluation, we con-

clude that there is a trade-off between network scalability, the

firmware update size, and other metrics like: data rate, update

efficiency, update time and energy consumption. Therefore,

there is a need for using more that one gateways that they will

collaborate to increase the reliability and the performance of

the firmware update process. For future work, we intend to

investigate the performance of the proposed firmware update

process using more gateways. Finally, we plan to evaluate the

proposed blockchain solution under specific network attacks.

VI. ACKNOWLEDGEMENTS

Dr. Vassiliou’s acknowledges the support of the European

Union’s Horizon 2020 Research and Innovation Programme

1at the time of execution ETH price was 210 USD

under Grant Agreement No 739578 and the Government of

the Republic of Cyprus through the Directorate General for

European Programmes, Coordination and Development.

REFERENCES

[1] Ponemon Institute, The 2019 Study on the Cyber Resilient Organization.,
2019.

[2] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “Ddos in the iot:
Mirai and other botnets,” Computer, vol. 50, pp. 80–84, 01 2017.

[3] C. Ioannou and V. Vassiliou, “Security Agent Location in the Internet
of Things,” IEEE Access, vol. 7, pp. 95 844–95 856, 2019.

[4] Z. Zinonos, P. Christodoulou, A. S. Andreou, and S. A. Chatzichristofis,
“Parkchain: An iot parking service based on blockchain,” in 15th Int.
Conference on Distributed Computing in Sensor Systems, DCOSS 2019,
Santorini, Greece, May 29-31, 2019. IEEE, 2019, pp. 687–693.

[5] W. A. Amiri, M. Baza, K. Banawan, M. Mahmoud, W. Alasmary, and
K. Akkaya, “Towards secure smart parking system using blockchain
technology,” in 2020 IEEE 17th Annual Consumer Communications
Networking Conference (CCNC), 2020, pp. 1–2.

[6] A. Hahn, R. Singh, C. Liu, and S. Chen, “Smart contract-based campus
demonstration of decentralized transactive energy auctions,” in 2017
IEEE Power Energy Society Innovative Smart Grid Technologies Con-
ference (ISGT), 2017, pp. 1–5.

[7] J. Qiu, X. Liang, S. Shetty, and D. Bowden, “Towards secure and smart
healthcare in smart cities using blockchain,” in 2018 IEEE International
Smart Cities Conference (ISC2), 2018, pp. 1–4.

[8] G. S. Aujla, M. Singh, A. Bose, N. Kumar, G. Han, and R. Buyya,
“Blocksdn: Blockchain-as-a-service for software defined networking in
smart city applications,” IEEE Network, vol. 34, no. 2, pp. 83–91, 2020.

[9] B. Lee and J.-H. Lee, “Blockchain-based secure firmware update for
embedded devices in an internet of things environment,” The Journal
of Supercomputing, vol. 73, no. 3, pp. 1152–1167, 2017. [Online].
Available: https://doi.org/10.1007/s11227-016-1870-0

[10] M. Baza, M. Nabil, N. Lasla, K. Fidan, M. Mahmoud, and M. Abdallah,
“Blockchain-based firmware update scheme tailored for autonomous
vehicles,” in 2019 IEEE Wireless Communications and Networking
Conference (WCNC), 2019, pp. 1–7.

[11] M. Steger, A. Dorri, S. S. Kanhere, K. Römer, R. Jurdak, and M. Karner,
“Secure wireless automotive software updates using blockchains: A
proof of concept,” in Advanced Microsystems for Automotive Applica-
tions 2017, C. Zachäus, B. Müller, and G. Meyer, Eds. Cham: Springer
International Publishing, 2018, pp. 137–149.

[12] A. Dorri, S. S. Kanhere, and R. Jurdak, “Towards an optimized
blockchain for iot,” in Proceedings of the Second International
Conference on Internet-of-Things Design and Implementation, ser.
IoTDI ’17. New York, NY, USA: Association for Computing
Machinery, 2017, p. 173–178. [Online]. Available: https://doi.org/10.
1145/3054977.3055003

[13] N. S. Mtetwa, P. Tarwireyi, A. M. Abu-Mahfouz, and M. O. Adigun,
“Secure firmware updates in the internet of things: A survey,” in 2019
International Multidisciplinary Information Technology and Engineering
Conference (IMITEC), 2019, pp. 1–7.

[14] K. Zandberg, K. Schleiser, F. J. Acosta Padilla, H. Tschofenig, and
E. Baccelli, “Secure firmware updates for constrained iot devices using
open standards: A reality check,” IEEE Access, vol. PP, pp. 1–1, 05
2019.

[15] A. Yohan and N.-W. Lo, “An over-the-blockchain firmware update
framework for iot devices,” in 2018 IEEE Conference on Dependable
and Secure Computing (DSC), 12 2018, pp. 1–8.

[16] LoRa Alliance Technical Committee, “Lorawan 1.0.3 specification,”
Tech. Rep., 2018. [Online]. Available: https://lora-alliance.org/sites/
default/files/2018-07/lorawan1.0.3.pdf

[17] FUOTA Working Group of the LoRa Alliance Technical Committee,
“Fuota process summary,” Tech. Rep., 2018. [Online]. Available:
https://lora-alliance.org/sites/default/files//remotemulticastsetupv0.0.pdf

[18] K. Abdelfadeel. Fuotasim simulator. [Online]. Available: https:
//github.com/kqorany/FUOTASim

[19] K. Abdelfadeel, T. Farrell, D. McDonald, and D. Pesch, “How to make
firmware updates over lorawan possible,” 2020. [Online]. Available:
https://arxiv.org/abs/2002.08735

411

Authorized licensed use limited to: Carleton University. Downloaded on September 21,2020 at 08:32:43 UTC from IEEE Xplore. Restrictions apply. View publication statsView publication stats

https://www.researchgate.net/publication/344057190

