http://hephaestus.nup.ac.cy

School of Information Sciences

Conference papers

2018

General Data Format Security Extensions for Biomedical Signals

Daukantas, S.

http://hdl.handle.net/11728/11779

Downloaded from HEPHAESTUS Repository, Neapolis University institutional repository

Title:	General Data Format Security Extensions for Biomedical
	Signals
Year:	2018
Author:	S. Daukantas , V. Marozas , G. Drosatos , E. Kaldoudi and A.
	Lukosevicius
Abstract:	Biosignals recorded using personal health devices and
	stored in General Data Format (GDF) are vulnerable when
	the data is transferred, processed and stored to the
	external servers. The aforementioned vulnerabilities
	influence data security and user's privacy. In this paper,
	we propose modifications of GDF format that enables the
	encryption both - personal data and biosignals. These
	modifications do not corrupt the intrinsic structure of the
	GDF format and allow to encrypt independently the
	header with personal data and the section of biosignals.
	The proposed modifications were implemented,
	embedded and tested in a personal health device –
	multiparametric scale. The header data and biosignals are
	encrypted directly in the scale, and saved in the micro-SD
	card using our modified GDF format. Finally, we present
	the required resources needed for encryption process.