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Abstract

In this report we give an overview of our participation in the TREC 2013 Contextual
Suggestion Track. We present an approach for context processing that comprises a newly
designed and fine-tuned POI (Point Of Interest) data collection technique, a crowdsourcing
approach to speed up data collection and two radically different approaches for suggestion
processing (a k-NN based and a Rocchio-like). In the context processing, we collect POIs from
three popular place search engines, Google Places, Foursquare and Yelp. The collected POIs
are enriched by adding snippets from the Google and Bing search engines using crowdsourcing
techniques. In the suggestion processing, we propose two methods. The first submits each
candidate place as a query to an index of a user’s rated examples and scores it based on
the top-k results. The second method is based on Rocchio’s algorithm and uses the rated
examples per user profile to generate a personal query which is then submitted to an index
of all candidate places. The track evaluation shows that both approaches are working well;
especially the Rocchio-like approach is the most promising since it scores almost firmly above
the median system and achieves the best system result in almost half of the judged context-
profile pairs. In the final TREC system rankings, we are the 2nd best group in MRR and TBG,
and 3rd best group in P@5, out of 15 groups in the category we participated.

1 Introduction

TREC 2013 is the second year that the Contextual Suggestion Track is running. The track’s
goal is to investigate search techniques considering as context only the user’s location, as well as,
user interests via personal preferences and past history. In other words, the track focuses on one
situation: a user with a mobile device with limited interaction but some sort of a user profile; who
is in a strange town; and who is looking for something to do. There is no explicit query; the implicit
query is: Here I am, what should I do?

The remainder of this report is organized as follows. Section 2 describes our methodology
for the context processing. The proposed suggestion models with details about the steps that we
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Figure 1: A system flowchart of the context processing.

followed are presented in Section 3. Our submitted runs and the official results of TREC Contextual
Suggestion Track are described in Section 4. Finally, Section 5 draws our conclusions.

2 Context Processing

The goal of the Contextual Suggestion Track 2013 was to recommend interesting places and activ-
ities from either the open web or ClueWeb12. In our case, we used the open web because we did
not obtain the ClueWeb12 dataset in time. Specifically, we followed a context processing approach
similar to [4] but we enriched it with extra place search engines that provide POIs (Points of Inter-
est) based on geographical location and a range of place types. Figure 1 shows an overview of our
context processing. In more detail, the steps that we followed to create a pool of POIs for every
context (i.e. a primary city of 50 randomly selected metropolitan areas) are:

1. POI collection: We generate appropriate queries for every context and submit them to
three place search engines, namely, Google Places1, Foursquare2 and Yelp3. The submitted
queries have as parameters the geographical location (latitude and longitude) of the context
and a set of place types that are expected to be interesting to the user. Several of the place
types covered by the search engines seemed to be irrelevant to the requirements of the TREC
challenge. Thus, we used the description of the TREC challenge and the example data sets to
define the set of place types that are relevant to the specific search task. Each search engine
has its own vocabulary for place types and consequently we selected three sets of place types,
one for each search engine. The sets of place types for every engine are:

1https://developers.google.com/places/
2https://foursquare.com
3http://www.yelp.com



• Google Places: Amusement Park, Aquarium, Art Gallery, Bar, Book Store, Bowling
Alley, Cafe, Movie Theater, Museum, Park, Restaurant, Shopping Mall, Zoo, Grocery
Store/Supermarket, Casino, Night Club, Beauty Salon, Travel Agency, Jewelry Store,
Library, Church.

• Foursquare: Arts & Entertainment, Outdoors & Recreation, Food, Farmers Market,
Smoke Shop, Mall, Gourmet Shop, Nightlife Spot, Spa/Massage, Gift Shop, Gym/Fitness
Center, Monument/Landmark, Tourist Information Center, Library, Spiritual Center,
Jewelry Store.

• Yelp: Arts & Entertainment, Landmarks & Historical Buildings, Food, Tobacco Shops,
Shopping Centers, Party & Event Planning, Tours, Nightlife, Active Life, Restaurants,
Beauty & Spas, Cards & Stationery, Travel Services, Department Stores, Religious Or-
ganizations, Jewelry, Libraries.

To overcome the limits on the number of results returned by the APIs of the engines (Google
Places: 200 results per query, Foursquare: 50 results per query, Yelp: 20 results per query),
we split each query into subqueries with different geographic coordinates to retrieve more
results. The total area that we cover with the above search engines is a 6 km2 square per
city. More precisely, in Foursquare and Yelp we use bounding boxes of 400 m2 with different
geographic coordinates, and in Google Places we use circular areas of radius 849 m and dif-
ferent geographic coordinates as center. Note that a square of side 1200 m can be inscribed
into a circle of radius 849 m. Consequently, we submit 5 × 5 = 25 queries to Google Places
and 15× 15 = 225 queries to Yelp and Foursqaure to cover the 6 km2 area. We use wider (i.e.
covering larger areas) subqueries in Google Places since the corresponding API returns more
results than the other search engines.

2. Obtaining the URLs: The Yelp API provides only the Yelp URLs. The actual URLs of
places are in the contextual list of places of Yelp; in order to retrieve them from there we use a
crowdsourced distributed technique (described in Section 2.1) due to high volume of retrieval
operartions that have to be executed.

3. Raw POI merging: The partial contextual lists of places of every search engine are joined
into a single one. Two items in different lists are merged if their URLs or their phone numbers
are identical, and the distance between their titles is smaller than a threshold (< 0.1). For
the computation of distance between the titles, we use the Jaro-Winkler distance [10] that is
a measure of similarity between two strings. The general rules that we follow when two places
match with the one of two previous ways are:

• When two matched items differ in their URL, we keep the URL of first engine in the
following order of decreasing priority: Google Places, Foursquare, Yelp.

• When two matched items differ in their title, we keep the longest title.

• The set of place types of the merged item is the union of the place types of the individual
items, that is, we keep all the place types assigned by the search engines.

The merged list of places contains only places that have a website URL in accordance to the
requirements of the track [9]. In Table 1, we show aggregated data about the list of collected
places for each context.



Table 1: Statistical information about the contextual list of places.

Context Google Foursquare Yelp Merged / Sum

Crestview, FL 103 33 38 131 / 174

Anniston, AL 139 53 26 168 / 218

Sumter, SC 147 52 40 173 / 239

· · · · · · · · · · · · · · ·
Orlando, FL 590 328 497 1008 / 1415

Atlanta, GA 694 559 738 1378 / 1991

Washington, DC 812 1126 1275 2378 / 3213

Total (with URLs) 14945 7664 8394 22600 / 31003

Total (retrieved) — 68517 15787 —
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4. Enrichment of POI descriptions: The final step is to enrich the merged list of places
with descriptions. We use as descriptions the snippets returned by general purpose web
search engines when the URL of a place is submitted as a search query. In particular, we use
Google4 and Bing5 to collect the corresponding snippets. For retrieving the snippets we use a
crowdsourcing mechanism (described in detail in Section 2.1) mainly in order to overcome the
querying-limits of engines. The snippets are used to generate two versions of the description
for each place. The first version, or else the “retrieval” version, of the description is used for
the retrieval tasks in our contextual suggestion algorithms. The second version, or else the
“presentation” version, is the description presented to the users. In merging the snippets,
for the retrieval descriptions we keep only the snippet of Google (or Bing’s when Google fails
to retrieve any result), and for the presentation descriptions, we keep both of them if the
Jaro-Winkler distance [10] of snippets is bigger than a threshold (≥ 0.25), otherwise we keep
the snippet of Google (or Bing’s when Google fails).

2.1 Crowdsourcing mechanism

The crowdsourcing mechanism we used to collect the necessary snippets and website URLs from
Yelp is based on a distributed HTTP client-server architecture in order to overcome certain search
engine limitations and exploit modern web browser heuristics on malformed HTML translation.
Our client is executed in a web browser (Google Chrome) extension context, as a silent background
process without the need of user interaction. At regular intervals, each client requests a new query
from the service, submits it to the engines (Google, Bing or Yelp) and reports back the snippet
of the most relevant result or the URL in the case of Yelp. The service prepares the queries to
be submitted to the engines, distributes the workload among clients and uses a MySQL database
backend to store the information retrieved by the clients. A small community of volunteers installed
our client to their Chrome browsers. Overall, an average of about 25 instances of the client were
used to collect the snippets of 19,825 unique URLs and the website URLs of 15,787 Yelp places,
53% of which included a website. Still, the process lasted around 20 days.

4http://www.google.com
5http://www.bing.com



3 Suggestion Processing

In this section we present two suggestion models that are applied to the pool of POIs that are
collected in the context processing (Section 2). The models are depicted in Figure 2.
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Figure 2: An overview of the proposed suggestion models.

3.1 Suggestion Model based on k-NN Classification

The idea is to assign a rating or score to each candidate POI based on the ratings of its k semantically
nearest POIs (neighbors) in the user profile. Then all candidate POIs are ranked in a decreasing
order of their assigned scores.

The model is implemented in three main steps:

1. Indexing the rated POIs. In order to be able to find the k semantically nearest (rated) neighbor
POIs of a candidate (unrated) POI, we create an index of the POIs that are part of the user
profiles and have been evaluated and rated by the users. For each rated POI we index its
title, description, place types and the text of its website. The place types of the rated POIs
are not provided by the track, but we retrieve them from the three place search engines that
we use in context processing (as we described in Section 2). For indexing, we use Indri6 v5.5
with the default settings of this version, except that we enable the Krovetz stemmer [5].

6http://www.lemurproject.org/



2. Generating queries from candidate POIs. We generate a query per candidate POI in a context.
The query consists of the POI title, place types and the description of the POI that we
retrieved in the context processing. From the query, we remove all punctuation and special
characters.

3. Scoring candidate POIs based on their k-NNs. We submit the queries (per context) that are
generated in Step 2 to the index that is created in Step 1 in order to rank the rated POIs in an
increasing semantical distance. In a standard k-NN [1, 6], a candidate POI (represented by its
corresponding generated query) would be assigned the majority rating of the top-k retrieved
POIs. In initial experiments, however, we found that taking into account the ranks or retrieval
scores of the top-k results is beneficial. We experimented with several formulas using cross-
validation, such as linear (e.g. Borda Count) or exponential weights decreasing with the rank,
and we settled for the following best-performing formula for scoring each candidate POI P :

P =

k∑
i=1

si ·Ri

k∑
i=1

si

, Ri =
RD

i + RW
i

2
, (1)

where si is the Indri tf-idf score of the ith ranked POI. This formula assigns to a candidate
POI a score equal to the weighted average of the ratings of the k-nearest-neighbor POIs in
a user profile, where weights are given by tf-idf similarity. As POI’s rating Ri we use the
average rating of the description (RD

i ) and the website (RW
i ), because in Step 1 we index

both the description and the text of website. The value of k that we use in our suggestions
was optimized to k = 23 by using 5-folds cross-validation [8] on the example places. The
scored candidate places are then ranked in a decreasing order of their scores.

3.2 Suggestion Model Based on a Rocchio-like Method

The idea is to use the rated POIs in the user profile to generate a query using a Rocchio-like
relevance feedback method [7, 6]. Then the generated query is used to score and rank all candidate
POIs

The model is implemented in three main steps:

1. Indexing all candidate POIs per context. Per context, we build an index of the POIs collected
during the context processing. For indexing, we use the title, description and the place types.
As noted earlier, the description used for the index is only the snippet of Google, or Bing
when Google failed to retrieve any result. The POIs are indexed with the Indri v5.5, using
the default settings of this version, except that we enable the Krovetz stemmer [5].

2. Generating a personalized weighted query per user with a Rocchio-like relevance feedback
method. We generate a query per user, representing her preferences, based on her rated
POIs. The terms used in the query are taken from the title, the place types and the descrip-
tions of the rated POIs. Let Di =< di,1, · · · , di,M > be a training example, where M is the
number of terms in the training set of all examples. The di,j is the weight of j term in the
Di; we use tf-only logarithmic weighting: di,j = log(1 + fi,j), where the fi,j is the frequency
of j term in the Di. Then, the trained weighted query of user u is given by the equation:



Qu =
4∑

j=0

(j − 2)
1

|Rj,u|
∑

D∈Rj,u

D

 (2)

where the Rj,u is the subset of the examples that were rated by user u with score j. In other
words, we take the centroids per rating j, multiply them with the normalized rating j− 2 (so
that the neutral rating’s centroid, i.e., for j = 2, does not contribute anything—it is zeroed),
and then add the centroids in a Rocchio relevance feedback fashion. All the terms of Qu that
have weight less or equal than zero are excluded from the query. The weight of every term is
included in the query by using the Indri Query Language and has, e.g., the following form:

#weight( 3.0 museum 2.7 art · · · 0.1 nice )

3. Retrieving suggestions. We submit the personalized queries of the users that are generated in
the second step in the index of every context (created in the first step). Our search engine is
again the Indri v5.5 with the default (LM) retrieval model. The results of each query, with a
possible cutoff threshold (e.g. top-50 results), are our suggestions for the corresponding user
and context.

3.3 An Attempt to Evaluate via a User Study

Figure 3: Screenshot of a user who has completed the rating of Anniston and the 50 examples from
Philadelphia.

In order to evaluate our methods, we developed an online tool which prompts the user to rate
the description of a POI according to her own interests with a scale of 0 to 4. On the main modal of
the application, the user is presented with the list of POIs that we collected, each of which contains
its name and the associated description (Section 2, Step 4). Initially, the user is asked to rate
the 50 example places from Philadelphia, essentially creating her profile. She also chooses a city



Table 2: Mean of results over all the profiles and contexts for P@5, MRR and TBG measures.

P@5 MRR TBG

Runs:

DuTH A 0.3283 0.4836 1.3109

DuTH B 0.4090 0.5955 1.8508

Difference:

DuTH B vs A +24,58% +23,14% +41,19%

and rates its consisting POIs using the same criteria. We then feed this profile to our models and
compare the suggestions to the actual ratings that the user provided using the Pearson product-
moment correlation coefficient [3]. However, due to the low number of participants (specifically
5) we managed to involve before the submission deadline, this method did not prove particularly
useful. Thus, we leaned towards the use of cross-validation described in Section 3.1 (Step 3).

4 Runs and Results

We submitted two runs to the TREC 2013 Contextual Suggestion Track. The first run is labeled
DuTH A and uses the k-NN classification technique, while the second run (DuTH B) is based on the
Rocchio-like approach (Section 3).

The evaluation results according to the P@5, MRR and TBG measures over all the profiles and
contexts of our two runs are reported in Table 2. The definitions of these measures are:

• Precision at Rank 5 (P@5): The fraction of suggestions within the top-5 results where the
user liked both the description and the geographically appropriate document.

• Mean Reciprocal Rank (MRR): One over the rank of the first suggestion where the user liked
both the description and the geographically appropriate document.

• Time-Biased Gain (TBG): This measure provides a unifying framework for information re-
trieval evaluation, generalizing many traditional effectiveness measures while accommodating
aspects of user behavior not captured by these measures. By using time as a basis for cal-
ibration against actual user data, time-biased gain can reflect aspects of the search process
that directly impact user experience, including document length, near-duplicate documents,
and summaries [2].

According to Table 2, DuTH B yielded better results than DuTH A in all the evaluation measures.
In any case, our two runs seem very promising considering the Best, Median and Worst results of
the 34 submitted runs, provided for all three measures. The comparison of our results with the
Best and Median results are shown in Table 3. In P@5, DuTH B performed equal or better then the
Median in 209 of the 223 judged context-profile pairs and achieved 47 times the best run. In MRR,
DuTH B scored equal or better than the Median in 206 of the 223 judged context-profile pairs and
achieved 114 times the best run. In all the aforementioned counts, we have included the judged
context-profile pairs with zero best score (11 for P@5 and MRR, and 8 for TBG).



Table 3: Number of context-profile pairs with Median-or-better and Best scores per measure.

Runs
Median-or-better Best

P@5 MRR TBG P@5 MRR TBG

DuTH A 189 175 151 25 86 22

DuTH B 209 206 185 47 114 40

Total: 223 judged context-profile pairs

5 Conclusions

We presented a context processing method that we used in order to collect over 22,000 places for
the TREC 2013 Contextual Suggestion Track using three popular place search engines: Google
Places, Foursquare and Yelp. Furthermore, we proposed two methods for personalized suggestion
of places/attractions with respect to given user preferences. The first suggestion model is based on
a k-NN algorithm by using tf-idf weights in the calculations of places’ scores (run DuTH B). In the
second suggestion model, based on Rocchio algorithm, we proposed the generation of a weighted
personal query for each user that was created by using terms from the example places and the
preferences of user. Then, this personal query is used to retrieve from a context the places that are
suggested to the user (run DuTH B).

In the TREC evaluation results, both approaches seem very promising. DuTH B (i.e. the Rocchio-
like approach) performed better than DuTH A. Compared to other groups, DuTH B scored almost
firmly above the median (in P@5 and MRR) and achieved the best results in almost half of the
judged context-profile pairs (at MRR). In the final TREC system rankings, we are the 2nd best
group in MRR and TBG, and 3rd best group in P@5, out of 15 groups in the category we partici-
pated. As first-time participants, we are very satisfied with these results.

Acknowledgements. The present work was partially funded by the project ATLAS (Advanced
Tourism Planning), GSRT/CO-OPERATION/11SYN-10-1730.
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