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Exponential smoothing: The effect of initial 
values and loss functions on post-sample 
forecasting accuracy 

Spyros Makridakis and Mich6le Hibon 

INSEAD, 77305 Fontainebleau Cedex, France 

Abstract: This paper describes an empirical investigation aimed at measuring the effect of different initial 
values and loss functions (both symmetric and asymmetric) on the post-sample forecasting accuracy. The 
1001 series of the M-competition are used and three exponential smoothing methods are employed. The 
results are compared over various types of data and forecasting horizons and validated with additional 
data. The paper concludes that contrary to expectations, post-sample forecasting accuracies are not 
affected by the type of initial values used or the loss function employed in the great majority of cases. 
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1. Introduction 

Exponential smoothing methods are widely used 
in many industrial applications including produc- 
tion planning, production scheduling and inven- 
tory control [Brown (1959); Brown (1963); Brown 
(1967); Gardner (1985); Holt et al. (1960); John- 
son and Montgomery (1974); Makridakis and 
Wheelwright (1989); Winters (1960)]. Although 
extremely simple and easy to model, such methods 
have been found by many studies to be as accu- 
rate as more complex and statistically sophisti- 
cated alternatives [Groff (1973); Chatfield (1978); 
Koehler and Murphree (1988); Makridakis and 
Hibon (1979); Makridakis et al. (1982); Martin 
and Witt (1989)]. Furthermore exponential 
smoothing methods are robust, easy to program, 
require a minimum of historical data while the 
cost of running them on the computer is the 
smallest of all available alternatives. 

The purpose of this paper is to empirically 
investigate the effect of various initial values and 
loss functions on the post-sample forecasting ac- 
curacy of three of the most widely used (Single, 
Holt’s and Dampened) exponential smoothing 

methods. The fourth widely used method (Win- 
ters’) was not utilized as empirical findings have 
shown it to produce forecasts very similar to those 
of Holt’s [see Makridakis et al. (1982)]. Section 2 
of the paper reviews the literature and provides 
the reasoning for undertaking this study. Section 3 
describes the methodology used and formulates 
various hypotheses to be studied. Section 4 pre- 
sents and analyses the results. There is a conclud- 
ing section which discusses the implications of the 
findings, validates such findings with another set 
of data provided by Fildes (1989) and presents 
possible avenues for further research. 

2. Literature review and reasons for undertaking 

this study 

Since the introduction of exponential smooth- 
ing methods the question of how to initialize the 
first smoothed value(s) has always been posed 
[Cogger (1973); McClain (1981); Taylor (1981); 
Wade (1967)]. Several alternatives have been pro- 
posed in the literature, but there is little advice on 
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which of these alternatives to use [see Chatfield 
and Yar (1988)]. The most common among them 
are the following (see Appendix for more details): 

(1) Least squares estimates: The historical data 
available is used to estimate ordinary least squares 
estimates of the initial value(s) [Brown (1959)]. In 
practice this is the most widely used approach for 
computing them. 

(2) Buckcasting: The data is inverted and fore- 
casting starts using the most recent data and going 
backwards forecasting the less recent ones. The 
forecast, or smoothed values, at period 1 are then 
used as initial values to start the usual forecasting 
[ Ledolter and Abraham (1984)]. 

(3) Training set: The data is divided into two 
parts. The first part (usually the smaller of the 
two) is used to estimate the initial values for the 
exponential smoothing equation(s) used with the 
second part where the final forecasts [see Makri- 
dakis et al. (1983)] are being based. 

(4) Convenient initial dues: Some convenient val- 
ues can be used to initialize the smoothing equa- 
tion(s). For instance, the first data value can be 
used to initialize the level, while the difference 
between the first and the second actual value (or 
the average of the second minus the first and the 
fourth minus the third) can be used to initialize 
the trend. [Makridakis and Wheelwright (1978).] 

(5) (6) and (7) Zero dues: The initial values can 
be all set to zero. or alternatively one can be set to 
zero and the other(s) can be initialized using one 
of the alternatives described above. This set of 
value(s) can be used as benchmarks to judge the 
improved accuracy of approaches 1 to 4 above. 
Although it seems an unreasonable alternative it 
provides an advantage in terms of large initial 
errors which force the estimated values to ap- 
proach the actual ones much faster than alterna- 
tive initialization procedures. 

Because of the widespread applications of ex- 
ponential smoothing methods even small reduc- 
tions in their forecasting errors can bring big 
improvements in terms of lower costs and/or be- 
tter customer services [Gardner (1990a)l. At pre- 
sent few guide-lines and no empirical evidence 
exist to help users decide upon the best initializa- 
tion procedure [see Chatfield and Yar (1988); 

Gardner (1985)]. The present study aims to pro- 
vide such empirical evidence and propose guide- 
lines, if any exist, for selecting appropriate initiali- 
zation approaches. 

Forecasting and, in general, statistical models 
can be optimized using a number of loss functions 
such as linear, quadratic, or higher order. The 
rationale behind such choice is that the negative 
consequence of forecasting errors are not neces- 
sarily proportional. Thus higher order loss func- 
tions which penalize bigger errors, in a quadratic 
or cubic fashion, can be used. On the other hand, 
when forecasting errors are considered to be pro- 
portional then a linear loss can be employed. As 
in the case of initial values there is not much help 
or empirical evidence to guide the choice of the 
best loss function to optimize a model’s parame- 
ters [Cogger (1979); Granger (1969); Montgomery 
and Johnson (1976)], although, in practice the 
great majority of computer programs employ a 
quadratic loss that minimizes the sum of square 
errors when a model is fitted to historical data. 
The aim of this paper is to study the influence of 
the five most widely used loss functions on the 
post-sample forecasting accuracy of the three ex- 
ponential smoothing methods utlilized in the pre- 
sent study. 

Finally, the effects of non-symmetric loss-func- 
tions are investigated as in practice the cost of 
negative errors (i.e., underestimating demand) is 
usually considered more critical than that of posi- 
tive ones (i.e., overestimating demand). Although 
alternative forms of modeling non-symmetric loss 
functions might be possible in the present paper 
our purpose is to simply determine the influence 
of non-symmetric losses on the post-sample fore- 
casting errors and suggest guide-lines, if any exist, 
in using non-symmetric loss functions to balance 
the cost of negative versus positive forecasting 
errors. 

3. Experimental design and methodology 

The three (Single, Holt’s and Dampened) most 
commonly used exponential smoothing methods 
were selected for the study (see Appendix for a 
description of the models involved). Seven types 
of initial values (see last section and Appendix) 
were used for Holt’s and Dampened smoothing 
and five for Single. In addition five optimization 



S. Makridakis and M. Hihon / Exponenrd smoorhrng 319 

criteria (loss functions) were employed. They range 
from a linear to a cubic power one (see Appendix). 
The optimization of the model parameter(s) was 
done using a grid search algorithm which found 
the optimal smoothing constants through finer 
and finer searches around a global optimum ini- 
tially identified through the grid search. In total 
35 possibilities were tested for each of the three 
smoothing methods. A non-symmetric loss func- 
tion was also applied by weighting positive errors 
less than negative ones. Such weighting was done 
at five levels (0.35, 0.50, 0.65, 0.80, 0.95) while 
computing the model fitted errors. Consequently 
the post sample forecasting accuracy of each 
horizon and method was recorded and compared 
to that of symmetric optimization. 

The methodology employed consisted of using 
the 1001 series of the M-competition [see 
Makridakis et al. (1982)] for each of the applicable 
possiblities. The procedure used was exactly the 
same as utilized in the M-competition. This means 
that when a data series was seasonal its values 
were first deseasonalized using the classical de- 
composition method [the post-sample forecasting 
accuracy when seasonal series were deseasonalized 
using other decomposition approaches were not 
different than those of the classical decomposi- 
tion, see Makridakis et al (1982)], a forecasting 
model was subsequently estimated and forecasts 
from this model obtained. Finally, these forecasts 
were reseasonalized using the seasonal indices 
found by the classical decomposition method if 
the data was indeed seasonal. If the data series 
was not seasonal the model was estimated directly 
on the original data and forecasts were directly 

found. Following the above-mentioned procedure, 

optimal model parameters were estimated and 
subsequently used to forecast for periods 
1, 2,...,m (where m=6 for yearly data, m=8 

for quarterly data and m = 18 for monthly data). 
These forecasts were then compared to the actual 
values (known but obviously not used in develop- 
ing the forecasting model) so as to compute the 
post-sample forecasting errors for each of the m 

forecasting horizons. Three post-sample accuracy 
measures were computed from such errors: the 
Mean absolute deviations (MAD), the Mean ab- 
solute percentage errors (MAPE) and the mean 
square errors (MSE). These accuracy measures were 
calculated separately for yearly, quarterly and 
monthly data and were also summarized for all 
data and forecasting horizons. Similarly, the same 
accuracy measures were also computed when a 
non-symmetric loss function was used to optimize 
the parameter(s) in the model fitting phase. 

The approach used in this study is not different 
to that of real life applications where m forecasts 
are made at period t (present) even though their 
accuracy can only be found in the future when the 
actual data becomes available. 

4. Presentation and analysis of the results 

Table 1 shows the MAPE of the best and worst 
initialization alternatives together with that of least 
square estimates (the most widely used approach) 
for various forecasting horizons. The optimization 
alternative used was that of minimizing a symmet- 
ric quadratic (MSE) loss function. As it can be seen 

Table 1 

Comparison of initialization. 

Optimization by MSE 

All data Single 

All data Holt 

All data Dampen 

Least squares 

Best: Convenient 

Worst: Zero 

Least squares 

Best: Both zero 

Worst: Convenient 

Least squares 

Best: Convenient 

Worst: Both zero 

Forecasting horizons 

1 3 6 

8.7 13.3 19.7 

8.5 13.1 19.4 

8.8 13.2 19.6 

8.7 12.9 21.3 
8.6 12.5 19.4 

8.8 13.4 22.1 

8.5 12.4 18.5 

8.4 12.5 18.7 

8.7 12.9 19.2 

8 12 18 

18.0 16.9 26.1 

17.9 16.9 26.1 

18.4 16.9 25.8 

22.7 21.3 33.6 
20.6 19.4 34.8 

25.4 26.0 42.5 

18.1 17.2 27.4 

18.2 17.2 27.5 

18.8 17.2 27.1 

Average 

(all horizons) 

17.0 

16.9 

17.0 

19.8 
18.7 

22.8 

17.0 

17.0 

17.3 
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Table 2 

S. Makridukis and M. Hihon / Exponential smoothing 

Comparison of optimization. 

Initialization by prevalent values 

All data Single MSE 

Best: Median 

Worst: e,i 

All data Holt MSE 

Best: MSE 

Worst: Median 

All data Dampen MSE 

Best: MAPE 

Worst: Median 

Forecasting horizons 

1 3 6 

8.7 13.3 19.7 

8. 13.0 19.4 

8.7 13.4 19.8 

8.7 12.9 21.3 

8.7 12.9 21.3 

9.5 15.5 24.6 

8.5 12.4 18.5 

x.7 12.2 18.6 

8.5 12.4 19.1 

8 12 18 

18.0 16.9 26.1 

17.9 16.X 25.9 

18.0 16.9 26.1 

22.7 21.3 33.6 

22.7 21.3 33.6 

28.3 33.0 50.0 

1X.1 17.2 27.4 

17.8 17.5 24.8 

19.3 17.9 26.7 

Average 

(all horizons) 

17.0 

16.9 

17.0 

19.6 

19.6 

27.6 

17.0 

16.X 

17.4 

in Table 1 the differences in average forecasting 
accuracy between the best and worst alternatives 
are extremely small. The same type of results can 
be observed in Table 2 which shows the MAPE of 
the best and worst symmetric optimization alter- 
native together with that of the MSE (the most 
widely used approach) for various forecasting 
horizons when the initialization approach em- 
ployed was that of ordinary least squares. None of 
the differences are large except for those of Holt’s 
for longer than six forecasting horizons. 

In conclusion. there is no evidence from the 
empirical results. except in the case of Holt’s 
smoothing for periods longer than six horizons, to 
suggest that differences in the initialization proce- 
dures and/or loss functions affect the post-sample 
forecasting accuracies. The same conclusions can 
be drawn when the data are separated into yearly, 
quarterly and monthly. All of the observed dif- 
ferences when various initial approaches and loss 
functions are used are extremely small except in 
the case of Holt’s smoothing for periods longer 

than six horizons. Table 3, for instance, shows the 
results of an analysis of variance for yearly data 
(m = 6 for such data) when Dampened smoothing 
was used. None of the differences between initiali- 
zation procedures (columns), optimization criteria 
(rows) or their interaction is statistically signifi- 
cant (the smallest P-value is equal to 0.34). When 
the same analysis of variance is conducted for 
Holt’s smoothing the only statistically significant 
differences come from the long horizon effect. 

Table 4 summarizes the MAPE for the best and 
worst alternatives for the various initialization val- 
ues and loss functions. ‘B’ on the top right corner 
of each box means ‘Best’ among the horizontal 
alternatives (i.e., optimization criteria) while ‘ W’ 
signifies ‘Worst’. Similarly, ‘B’ and ‘W’ on the 
left, lower corner of each box mean ‘Best’ and 
‘Worst’ alternative among the vertical ones (i.e., 
initialization values). Table 4(a) presents the re- 
sults of Single smoothing. 4(b) presents those of 
Holt’s while 4(c) presents those of Dampen. 

The differences in Table 4(a) are extremely 

Mean Computed p-value 

square F-value 

453.0 0.87 0.498 

587.0 1.13 0.340 
47.0 0.09 1.000 

519.0 

Table 3 

Two-way analysis of variance. J 

Source 

Columns 

Rows 
Row x columns 

Error 

Sum of 
squares 

2266.0 

2940.0 
1199.0 

3062580.0 

d.f. 

5.0 

5.0 
25.0 

5904.0 

Totals 3068990.0 5939.0 

“ 165 series of yearly data with Dampen-trend method. Average Error on 6 forecasting horizons. Horizontal values: Errors for each 
Optimization criteria. Vertical values: Errors for each Starting value. The differences are not statistically significant. 
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small (the largest is only 0.3%). Moreover, none of 
the alternatives perform consistently ‘best’ or 
‘worst’ in terms of the initialization and optimiza- 

tion alternatives experimented with. 
The differences in Table 4(b) are considerably 

bigger than those in Table 4(a). In addition the 
median is consistently the worst optimization ap- 
proach while MSE is consistently the best. Among 
the different initialization alternatives the best re- 
sults are found when both initial values are set to 
zero, except in one case where the best result is 
when only one of the two is set to zero. 

Differences in Table 4(c) are small and less 
consistent than those in Table 4(b). The loss func- 
tion which does best most of the time is that of 
MAPE while the corresponding ‘best’ for initializa- 
tion is that of least square estimates and conveni- 
ent values. 

There are no consistent results that hold across 
Tables 4(a), 4(b), and 4(c). Thus, we cannot say 
that some specific initialization procedure or loss 
function holds true across all three exponential 
smoothing methods studied. In Single smoothing, 
Table 4(a), the best results are found when the loss 

Table 4(a) 

Single smoothing, average MAPE for all forecasting horizons and time series. a 

Initial 

values 

1 Least squares estimates 

2 Backcasting 

3 Training set 

4 Convenient values 

5 .Y = 0. or 

s =0 and t=O 

Symmetric loss functions 

I II 

MAD MAPE 

16.9’ 16.9’ 

16.9 ,16.8 

16.9 ,16.88 

,16.8H ,16.8’ 

w17.0 w17.1w 

III 

Median 

w16.9’ 

J6.7” 

16.88 

16.8’ 

w16.9R 

IV 

MSE 2nd 

p0WS 

w17.ow 

R1 6.9 

w17.0 

,16.9w 

wl7.0 

V 

Cubic 

p0WW 

17.ow 

17.ow 

,17.1 

“16.9” 

17.0 

a ‘B’ at the upper, right hand side of each box signifies best while ‘W’ signifies worst accuracy. ‘B’ at the lower, left hand side of each 

box signifies best, while ‘ W’ signifies worst accuracy. 

Table 4(b) 

Holt’s smoothing, average MAPE for all forecasting horizons and time series. .’ 

Initial Symmetric loss functions 

values I II III IV V 
MAD MAPE Median MSE 2nd Cubic 

power power 

1 Least squares estimates 19.gB 19.9 21.6w 19.8’ 20.3 

2 Backcasting 20.7 21.5 27.gw 20JR 21.6 

3 Training set 21.4 22.8 30.5” 20.8” 22.5 

4 Convenient values ,23.5 ,23.6 w29.6w ,22.8’ w 24.8 

5 s = 0. or 

s =0 and t=O “19.0 ,1x.9 27.0w ,18.7R “19.7 

6s=O 
r = least squares 19.1 19.1 27.1w 18.98 J9.7 

7 s = least squares 

T=O 19.2B 19.3 ,26.gw 21.8 25.0 

’ ‘B’ at the upper, right hand side of each box signifies best while ‘W’ signifies worst accuracy. ‘B’ at the lower, left hand side of each 
box signifies best, while ‘ W’ signifies worst accuracy. 
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Table 4(c) 
Dampen smoothing, average hiAPE for all forecasting horizons and time. A Series 

Initial Symmetric loss functions 

values I II III IV V 

1 Leat squares estimates 

2 Backcasting 

3 Training set 

4 Convenient values 

5 s = 0. or 

s =0 and t=O 

6s=O 

I = least squares 

7 .F = least squares 

T=O 

MAD 

16.9 

17.0 

17.oa 

,16.X 

w17.3 

17.1” 

16.9a 

MAPE 

16.8’ 

,16.7H 

17.0” 

n16.7’ 

w17.2’ 

w17.2 

17.1 

Median 

17.4w 

17.4w 

17.4w 

17.4w 

w17.7w 

17.6w 

n17.3 

MSE 2nd 

power 

n17.0 

17.1 

17.3 

n17.0 

w17.3 

17.1n 

17.2 

Cubic 

power 

a17.2 

17.3 

17.4w 

al 7.2 

17.4 

a17.2 

,175w 

” ‘B’ at the upper, right hand side of each box signifies best while ‘W’ signifies worst accuracy. ‘B’ at the lower, left hand side of each 

box signifies best, while ‘ W‘ signifies worst accuracy. 

function is the median and the worst the cubic 
power. There is no best initialization procedure 
although the worst is when the first value is set to 
zero. However, it must be emphasized that all 
differences are extremely small. In Holt’s smooth- 
ing, Table 4(b), the worst loss function is the 
median [the opposite of Table 4(a)] and the best is 
the MSE in all but one case when the MAD provides 
the best results. In terms of initial values the best 
post-sample accuracies are found when the first 

values are both set to zero, except in one case 
when only one of the two is set to zero. The worst 
results are when convenient values are used to 
initialize. 

For Dampened smoothing, Table 4(c), the re- 
sults are closer to those of Single. Thus the worst 
loss function is the cubic power (although not in 
all cases), the worst initialization is with zero 
values (not in all cases) while the best is found 
with convenient values (again not in all cases). 

Table 5a 
Single smoothing, average MAD for all forecasting horizons and time series. a (Values have been divided by 1000) 

Initial 

values 

1 Least squares estimates 

2 Backcasting 

3 Training set 

4 Convenient values 

5 s = 0. or 
s =0 and t =0 

Loss functions 

I II III IV V 

MAD MAPE Median MSE 2nd Cubic 

power power 

15.4 lssw 15.3s ,lS.4 w15.4 

15.4w 15.4” a15.1 15.3 a1s.oa 

,15.3w a15.2 15.3w “15.2 ,150” 

1s.5w 15.4 15.5w 15.3 a15.08 

w15.6w w15.6w w15.6w ,15.4 15.1n 

* ‘B’ at the upper, right hand side of each box signifies best while ‘ W' signifies worst accuracy. ‘B’ at the lower, left hand side of each 
box signifies best, while ‘ W’ signifies worst accurcy. 
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Table 5(b) 

Holt’s smoothing, average MAD for all forecasting horizons and time series a (Values have been divided by 1000) 

Initial 

values 

Loss functions 

I II III IV V 
MAD MAPE Median MSE 2nd Cubic 

1 Least squares estimates 12.4a 13.2 ,17.3w 

power 

12.4’ 

power 

15.1 

2 Backcasting 11.9 ,12.7 21.9w 11.8R ,15.8 

3 Training set ,15.5 ,18.7 ,28.1w w14.38 14.9 

4 Convenient values 13.6 15.6 23.5w 11.7B 14.4 

5s= or 

s =0 and t =0 all.38 12.9 20.4w all.5 a13.9 

6s=O 

t = least squares 12.28 13.6 22.gw 12.28 14.7 

7 s = least squares 

T=O 13.08 13.9 18.6w 13.6 a13.9 

* ‘B’ at the upper, right hand side of each box signifies best, while ‘W’ signifies worst accuracy. ‘B’ at the lower, left hand side of 

each box signifies best, while ‘w’ signifies worst accuracy. 

The great majority of differences are extremely 
small while in Single smoothing such differences 
are even smaller - practically zero. 

Table 5 shows results similar to those of Table 
4 except the post-sample accuracy is that of MAD 

instead of MAPE. Concerning Single smoothing the 
differences in post-sample MADS are extremely 

small as was the case in Table 4(a). However, 
there are no other consistent patterns between 
Tables 4(a) and 5(a). For instance, in Table 5(a) 
there is a consistent improvement in post-sample 
MAD when the model parameters are optimized 
through a cubic loss function while in Table 4(a) 
this is not the case. Similarly, the initial values 

Table 5(c) 
Dampenend smoothing, average MAD for all forecasting horizons and time series. a (Values have been divided by 1000) 

Initial Loss functions 

values I II III IV V 
MAD MAPE Median MSE 2nd Cubic 

1 Least squares estimates 13.4 14.9w 14.2 

power 

a12.28 

power 

12.9 

2 Backcasting 13.3 14.3 14.4w 12.P ,13.2 

3 Training set 13.5 ,13.2 15.gw 13.16 13.1a 

4 Convenient values a13.2 14.3 w18.7w 12.9’ ,13.2 

5 s = 0. or 

s=O and t=O 13.6 w15.6w 15.1 12.4’ 12.9 

6s=O 

t = least squares 13.9 14.8 ,15.ow 12.6B ,12.4 

7 s = least squares 

T=O ,15.0 15.3w ,15.0 ,14.1 13.0B 

a ‘IX’ at the upper, right hand side of each box signifies best, while ‘W’ signifies worst accuracy. ‘B’ at the lower, left hand side of 

each box signifies best, while ‘w’ signifies worst accuracy. 



that provide the most accurate results are not the 
same in Tables 4(a) and 5(a). 

In Halt’s smoothing the differences in MADS are 
bigger than those of single smoothing, however the 
cubic power loss function does not improve the 
results. Moreover, the median continues to be the 
worst optimization alternative while the MSE is the 
best. There is also consistency in initialization 
procedures where the results of Table 4(b) and 
5(b) are similar. Thus, setting both initial values at 
zero provides the best results most of the time 
while the worst results are found when the initiali- 
zation is done through a training set. 

Finally, there is little consistency between Ta- 

bles 4(c) and 5(c) - Dampened smoothing. In 
Table 5(c) the best optimization criterion is MSE in 
all but one case, while in Table 4(c) the best was 
MAPE (in all but two cases). Finally. there is no 
initialization procedure which is consistently best 
in Table 5(c) while the best in 4(c) was that of 
convenient values (in all but two cases). 

Thus, it can be concluded that few consistent 
results can be reported between Tables 4(a) and 
5(a) and 4(c) and 5(c). That is whatever, if any- 
thing, influences post-sample MAPES does not con- 
sistently influence MADS. This is not, however. the 
case with Tables 4(b) and 5(b) - referring to 
IIolt’s smoothing - where the results are fairly 
consistent. 

Although, the authors are well aware of the 
problems of using MSE over many series of un- 
equal values they also computed post-sample ac- 
curacies using such measure in order to provide a 
complete range of results and anticipate possible 
criticism that a widely-used measure such as the 
MSE was not used. As it could be expected, the 
values found were large and extremely unstable. 
The averages were often reduced by a factor of 
10,000 by excluding as few as six series. Given the 
large number of series and forecasting horizons 
involved (almost 14.000 in total) such large 
fluctuations make the use of MSE inappropriate as 
a comparative measure [see also Chatfield (1988)]. 
Furthermore~ no consistent or insightful results 
could be deduced by examining the various tables 
of post-sample MSE values even when large errors 
were excluded. This is why tables using MSES are 
not reported in this paper. 

The non-symmetric optimization was done 
using ordinary least square estimates for initial 
values and a quadratic (MSE) loss function. Five 

levels of non-symmetric losses were used by ad- 
ding to the sum of mode1 fitting square errors 
35%, 50%, 65%, 80% or 95% of the square error at 
period t, when such error was positive while ad- 
ding the entire square error when it was negative 
(see Appendix for more details). As usual the 
parameter(s) that minimized the sum of square 
errors of model fitted were chosen and were used 
to make m forecasts and subsequently compute 
the post-sample accuracies. 

The differences in past-sample accuracies when 
a non-symmetric loss function was used were ex- 
tremely small for all three exponential smoothing 
methods. In Single smoothing the great majority 
of such differences were in the second decimal. In 
Holt’s smoothing there were some small improve- 
ments in post-sample accuracies for longer than 
twelve forecasting horizons when the non-symmet- 
ric loss function. at the 35% level, was used. How- 
ever, such differences were not statistically signifi- 
cant while the best overall results were still ob- 
tained when a symmetric loss function was em- 
ployed. In Dampened smoothing the best overall 
results were found with a non-symmetric loss 
function at the 50% level. Furthermore, for twelve 
or longer forecasting horizons the improvements 
were considerably larger than those of Single or 
Holt’s smoothing and consistent but small in ab- 
solute values. 

4. I. Discussion 

The purpose of this paper is not to enter into 
the debate of which accuracy measure is the most 
appropriate or what is the value of empirical com- 
petitions. Such issues have been debated elsewhere 
[Chatfield (1988); Fildes and ~akridakis (1990); 
Zellner (1986); Armstrong and Lusk (1983)]. In- 
stead, it aims at investigating the issues of the 
various initial values proposed in the literature 
and a range of loss functions used at present. At 
the same time, the authors are well aware that 
relative measures such as MAPE are more ap- 
propriate when averaging over many series and 
this is why MAPES were used to express the results 
of this study in all tables except 5 which uses 
MADS. At the same time MSE were also computed 
for reasons of completeness. 

If the median is excluded as a loss function to 
base the optimization of mode1 parameters, few 
consistent differences can be found in past-sample 
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forecasting accuracies whether such accuracies are 
measured in terms of MAPE, MAD or MSE. More- 

over, no consistent patterns could be found when 
MAPES, MADS or MSES criteria were used to opti- 
mize the model’s parameters and hIAPES, MADS or 
MSES measures were employed to compute post- 
sample accuracies. Thus, there was no correspon- 
dence between the type of loss function used 
during the model fitting and the accuracy measure 
employed to compute the post-sample errors. 

These results are surprising. In the forecasting 
literature the initialization procedure and the opti- 
miziation criteria have been considered to in- 
fluence post-sample forecasting accuracies. It has 
been also advocated that there must be a corre- 
spondence between the loss function used in the 
model fitting and the corresponding post-sample 
accuracy employed to measure forecasting errors 
[Zellner (1986)]. 

From a practical point of view the prevalent 
approaches of using MSE as a loss function and 
ordinary least square estimates to initialize the 
starting values seems adequate as the differences 
between such approaches and the best of the 
alternatives are small and statistically non-signifi- 
cant, in the great majority of cases. Furthermore, 
as these approaches (MSE as the loss function and 
least square estimates for initialization) are easy to 
program and require little computer time to apply 
there is no motivation to change them. On the 
other hand, it makes no sense to consider more 
elaborate alternatives such as backcasting for ini- 
tial values or medians for optimizing the model’s 
parameter(s) since such alternatives are more dif- 
ficult to program and require more computer time 
when used to obtain forecasts. 

In addition to the various results reported in 
the last section several other ideas were tested 
during our study. For instance we found that 
sample size did not exhibit any consistent influence 
on the magnitude of post-sample forecasting errors 
or the choice of the best initialization or optimization 
alternatives. This finding is consistent with that 
reported in Makridakis and Hibon (1979) and, is 
no doubt, due to the fact that the pattern of the 
series changes even abruptly in some cases. In 
addition, if frequency distributions of the dif- 
ferences in post-sample errors between the various 
approaches were made it was found that the great 
majority of them were less than 1% - this was in 
particular true with Single and Dampened 

smoothing. Furthermore, no obvious patterns of 

such differences could be deduced and no im- 
portant factors could be found that could explain 
the larger than 1% errors. 

Another idea tested was whether a specific set 
of initial values or loss functions was best for 
yearly, quarterly or monthly data. But again no 
consistent conclusion that holds among the three 
methods could be reached. Similarly, no forecast- 
ing horizons could be better predicted than others 
by the appropriate choice of specific initial values 
or loss functions. Finally, loss functions not used 
either in theory or practice (e.g., the power of 1.5, 
2.5 and 4) were also tried and again the results 
showed few consistent differences except possibly 
&hen optimizing using a 4th power loss function 
which produced the worst results in most of the 
cases studied. 

The practical implications of our study suggest 
that there are few benefits, if any, in attempting to 
find optimal ways to initialize the values of ex- 
ponential smoothing methods (at least the three 
we studied). Moreover, the choice of a best loss 
function is of no consequence as long as the 
median is excluded. As Gardner (1990b) explained 
‘the reason that starting values and loss functions 
don’t make any difference is that the optimal 
smoothing parameter(s) found compensate for 
various starting values and different loss func- 
tions’. However, we must emphasize that our re- 
sults apply to the average of forecasts that have 
been found mechanically (i.e., using an automatic 

approach) without studying each series separately 
to determine the best initial values or optimal loss 
function. In our view additional research will be 
required to determine if our findings also apply 
when single series are studied and optimized indi- 
vidually [e.g., see Chatfield (1978); Chatfield and 
Yar (1988)]. 

Our findings suggest that the prevalent ap- 
proach of initializing by ordinary least squares 
and optimizing by a quadratic loss (MSE) function 
provide satisfactory results which, on average when 
the methods are run mechanically, cannot be im- 
proved in any consistent way that holds constant 
across methods, data types, forecasting horizons 
or sample sizes. These conclusions are both good 
and bad news. The good news is that exponential 
smoothing methods (and in particular Simple and 
Dampened) are easy, accurate and robust forecast- 
ing techniques that can be readily used across a 



Table 6(a) 

Single smoothing. average MAPE for all forecasting horizons and time series. 

Initial 

values 

Fildes data 

I II III IV V 
MAD MAPF" Median MSE 2nd Cubic 

power power 

1 Least estimates squares 18.1 18.1 18.1 18.2 18.2 

2 Backcasting 18.1 18.1 18.2 1x.1 18.2 

3 Training set 18.1 11.9 18.1 18.1 18.1 

4 Convenient values 18.1 17.9 18.2 18.1 18.2 

5 5 = 0. or 

s =0 and (=O 18.1 18.1 18.1 1x.1 18.1 

“ Practically all the MAPES are the same in this table. This is why no best and worst approach has been indicated. 

wide range of actual forecasting applications. The 
bad news is that theoretical expectations do not 
seem to hold empirically for reasons that are not 
always clear apart from saying that the pattern of 
series is changing. Thus, research efforts must 
concentrate on better understanding such reasons 
and in developing alternative methods and ap- 
proaches that can more accurately predict real life 
time series whose pattern, we know, change over 
time. Somehow it must be possible to beat Single 
smoothing for longer forecasting horizons and 
Dampened for shorter and medium ones. More- 

over, research efforts must be directed in better 
understanding the effects of one-period-ahead 
versus two, three , . . . . m-period optimization and 
their consequence on post-sample forecasting ac- 
curacy [ Makridakis (1990)]. Finally, more research 
needs to be done to better understand the lack of 
consistency between various loss functions used in 
model optimization and the resulting post-sample 
accuracies. For instance, one would have expected 
a correspondence between the type of loss func- 
tion used in model fitting and the best results 
found when post-sample accuracies were mea- 

Table 6(b) 
Holt’s smoothing. average MAPE for all forecasting horizons and time series. ’ 

Initial 

values 

1 Least estimates squares 

2 Backcasting 

3 Training set 

4 Convenient values 

5s=o, or 
r =0 and r=O 

6s=O 

I = least squares 

7 s = least squares 
t=o 

Fildes data 

I 

MAD 

9.1B 

8.8” 

8.9R 

9.6a 

wlX.1 

“7.3B 

10.4 

II 111 
MAPE Median 

12.4w all.5 

12.5 17.1W 

10.2 18.Ow 

w12.7 w 2o.ow 

11.6a 16.9 

9.3 15.4” 

a9.0 17.7w 

IV 

MSE 2nd 
p0WW 

9.1 

9.2 

10.1 

10.3 

,1x.9 

a8.2 

x.9B 

V 

Cubic 

power 

10.4 

10.3 

10.7 

10.5 

,19w 

as.8 

9.6 

I’ ‘B’ at the upper, right hand side of each box signifies best while ’ W’ signifies worst accuracy. ‘B’ at the lower, left hand side of each 

box signifies best, while ‘ W’ signifies worst accuracy. 
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Table 6(c) 

Dampened smoothing, average MAPE for all forecasting horizons and time. ’ Series 

Initial 

values 

Fildes data 

I 

MAD 

11 

MAPE 

III 

Median 

IV 

MSE 2nd 

V 

Cubic 

1 Least squares estimates 12.6 13.4 13.6w 

power 

a10.4 

power 

,9.4a 

2 Backcasting a12.5’ ,13.2 13.8W 12.6 13.5 

3 Training set 14.3w 13.9 w14.3w 13.3 10.8a 

4 Convenient values 13.4w ,13.2 a13.1 12.3’ 13.4w 

5 s = 0. or 

s=O and r=O ,18.0 w17.4 13.98 ,18.1w 18.0 

6s=O 

r = least squares ,18.0 ,17.4 13.9a ,18.1 ,18.2 

7 s = least squares 

r=O 15.0w 14.3 a13.1 12.6 11.5B 

a ‘B’ at the upper, right hand side of each box signifies best while ‘ W' signifies worst accuracy. ‘B’ at the lower, left hand side of each 

box signifies best, while ‘W’ signifies worst accuracy 

sured in the same fashion; however, none were 
found in our study. Finally, additional work is 
needed to determine whether or not our findings 
also apply to single series when an expert forecas- 
ter attempts to minimize post-sample errors. 

4.2. Validation 

An interesting question in all types of empirical 
work is whether or not the results found can be 
generalized and can also hold with other types of 
data. In order to validate the generality of the 
findings it was therefore decided, after the present 
results were found, to test the various possibilities 
we experimented in this study with the data of 
Fildes (1989) Such data are not at all similar to 
those of the M-competiton. They consist of 261 
monthly series all coming from a Single source 
(AT&T). Moreover, all series exhibit a strong 
negative trend and include little or no seasonality. 

Table 6 presents the best and worst alternatives 
(except for Single Smoothing where the ‘Best’ and 
‘Worst’ alternatives are practically the same) for 
the Fildes data. The similarities between the re- 
sults shown in Table 6 and the corresponding ones 
in Table 5 which uses the M-competition data is 
considerable as far as Single and Holt’s smoothing 
are concerned. That is the magnitude of the dif- 
ference between the various experimental cases is 

very similar while the best and the worst alterna- 
tives are practically the same. With Dampened 
smoothing the best initialization procedure, for 
the Fildes data, most of the time, was that of the 
least squares (this was not so with the M-competi- 
tion data) while there was no loss function which 
provided in a consistent way the best or the worst 
results as it was also the case with the M-competi- 
tion data. 

5. Conclusion 

This study has shown few differences in post 
sample forecasting accuracies when different ini- 
tialization values and optimization (loss) functions 
have been used. In addition non-symmetric loss 
functions did not change in any significant fash- 
ion the post-sample results. Apart from the con- 
clusion that the median produced inferior results, 
no other pervasive finding holds across the experi- 
mental possibilities tested. Finally, concerning the 
differences observed the biggest ones were for 
longer than six forecasting horizons and were 
mostly concentrated to Holt’s exponential smooth- 
ing. All differences between the various experi- 
mental cases in Single smoothing were extremely 
small while the magnitude of those very few of 
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Dampened which were larger were a small frac- 
tion of those of Holt’s. 

The practical implications of this study suggest 
dropping existing concerns about initial values 
and loss functions at least when the various meth- 
ods are run on a push button basis and instead 
concentrating on more important issues affecting 
post-sample forecasting accuracy such as optimiz- 
ing for more than one-step-ahead forecasting 
horizons and using actual post-sample measures to 
base the model selection process. 

To allow replication and/or extensions of the 
present study both the M-competition and the 
Fildes data can be obtained at no cost by writing 
to Spyros Makridakis at INSEAD. 

Appendix A: Exponential methods used 

Single 

e, = x, - 2(_,(l), 

where X, is the actual data at period t and g,,-,(l) 
is the one-step-ahead forecast at period t - 1 for 
period t. 

S, = S,_, + Lye,, 

where (Y is the smoothing constant whose value is 
0 < ar < 1 and j?,(m) = S,, where the maximum m 
is six for yearly data, eight for quarterly and 
eighteen for monthly. 

Holt’s smoothing 

e, = x, - &(l), 
s, = s,-, + 7;-, + ae,. 

7;= T,-, +Be,, 

where fi is a smoothing constant whose value is 

0 < j3 < 1 and $(m) = S, + m7;. 

Dampened trend 

i,(m)=S,+ fJ+‘7;. 

Appendix B: Initial values used 

Least squares estimates 

For single exponential smoothing the initial 
value S, was found as 

S,=; 5 x, 
/=l 

where n is the number of historical data available. 
For Holt’s and dampened exponential smooth- 

ing S, and T, are found as 

nf:tX,- ?tiX, 

T, = I=;, r=l t=1 

II 

( ) 

2 

nCt’- Et 
r=1 t=1 

and 

S,=f ix,-T,; $t. 
1=1 I=1 

This initialization approach is referred to as the 
‘prevalent’ one as it is the most widely used in 
forecasting applications [Brown (1959); Johnson 
and Montgomery (1974)]. 

2. Backcastings 

The data is inverted and the most recent data 
value becomes period 1 while the least recent (i.e., 
period) becomes the last one (i.e., period n). Con- 
sequently the values of S,, or S, and T, are found 
as above and the appropriate equation(s) is(are) 
used to forecast. The last values of S,, or S, and 
T, are used for initial estimates in the regular 
forecastings except that the sign of the value of T, 

is reversed. Thus, in single smoothing 

s, = S,,, 

while in Holt’s and Dampened, 

S, = S,, T, = 7;, 

3. Training set 

The data is separated into two sets (the first set 
makes up one third of the historical data while the 
second makes up the remaining two thirds). The 
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initial values for S, or S, and r, for the training 
set are found as in 1 above. 

If f is the last period of the training (first) set 
then the values of the S, or S, and T, for the 
remaining data are found as: 

s, = s,. 

or 

s, = s,, T, = r/. 

4. Convenient values 

The value of S, or S, and T, are simply set as 
follows: 

s, = X, 1 

or 

s, = X,, T,=(X,-X,+X,-X,)/2. 

5. Zero values 

The initial values are set as follows: 

s, =o, 

or 

s, =o, Tl =O. 

6. Zero Value (for Holt’s and Dampened 
ing only) 

s, =o 

T, = Least square estimate (see 1 above). 

7. Zero value (for Holt’s and Dampened 
ing only) 

S, = Least square estimate (see 1 above) 

T, =O. 

Appendix C: Symmetric loss functions 

smooth- 

smooth- 

The one-period-ahead forecasting errors e, were 
computed as: 

e, = X, - X,,, (1). 

Consequently the smoothing parameters (Y, (Y 
and p, or (Y, j3 and @I were chosen in such a way 
as to minimize the corresponding model fitting 
loss function, 

(i) Mean absolute deviation (MAD): 

(ii) Mean absolute percentage error (MAPE): 

+$L. 
t=1 ’ 

(iii) Median absolute percentage error (Median): 
The middle value (median) when all absolute 

percentage errors were arranged from the smallest 
to the largest. 

(iv) Mean square error (MSE): 

(v) 3th power: 

Appendix D: Non-symmetric loss functions 

The prevalent initialization procedure (least 
square estimates see 1 above) and the prevalent 
optimization function (MSE, (I) above) were used 
with the following non-symmetric loss functions: 

jlj Clcie:, 

where 

$=l when e, > 0. 

=c whene,<O, 

where c took the values of 0.35, 0.50, 0.65, 0.80 
and 0.95. 
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